cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103625 a(n) = 3 + 7*a(n-2) + sqrt(1 + 48*a(n-2) + 48*a(n-2)^2), with a(1) = 0, a(2) = 0, a(3) = 2.

Original entry on oeis.org

0, 0, 2, 4, 34, 62, 480, 870, 6692, 12124, 93214, 168872, 1298310, 2352090, 18083132, 32760394, 251865544, 456293432, 3508034490, 6355347660, 48860617322, 88518573814, 680540608024, 1232904685742, 9478707895020, 17172147026580, 132021369922262, 239177153686384
Offset: 1

Views

Author

Pierre CAMI, Mar 29 2005

Keywords

Comments

Define j(n) = sqrt(48*a(n)^2 + 48*a(n) + 1), then j(n) is prime for n=3, 4, 5, 6, 7, 25, 28, 32, 35, 48, 65, 66, 88, 96, 113, 119, 151, 155, 182, 220, 231, 316, 488, 531, 599, 722, 1049, 1176, ...
For n > 1, first member of the Diophantine pair (m,k) that satisfies 12*(m^2 + m) = k^2 + k; a(n)=m. - Herbert Kociemba, May 12 2008
Former name: Define a(1)=0, a(2)=0, a(3)=2, a(4)=4, a(5)=34, a(6)=62, a(7)=480, a(8)=870 such that from i=1 to 8: 48*a(i)^2 + 48*a(i) + 1 = j(i)^2 with j(1)=1, j(2)=1, j(3)=17, j(4)=31, j(5)=239, j(6)=433, j(7)=3329, j(8)=6031. Then a(n) = a(n-8) + 28*sqrt(48*(a(n-4)^2) + 48*a(n-4) + 1). - G. C. Greubel, Mar 22 2024

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0,0] cat Coefficients(R!(2*(x^2+x+1)/(1-x-14*x^2+14*x^3+x^4-x^5))); // G. C. Greubel, Jul 15 2018
    
  • Mathematica
    a[1]=0; a[2]=0; a[3]=2; a[n_]:=a[n]= 3+7a[n-2]+Sqrt[1+48a[n-2]+48a[n-2]^2]; Table[a[n],{n,1,20}] (* Herbert Kociemba, May 12 2008 *)
    Rest@CoefficientList[Series[2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3+x^4-x^5), {x,0,30}], x] (* G. C. Greubel, Jul 15 2018 *)
    LinearRecurrence[{1,14,-14,-1,1},{0,0,2,4,34},30] (* Harvey P. Dale, Jun 04 2021 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec(2*x^3*(1+x+x^2)/(1-x-14*x^2+14*x^3 + x^4-x^5))) \\ G. C. Greubel, Jul 15 2018
    
  • SageMath
    @CachedFunction
    def b(n): return chebyshev_U(n, -2) # A125905
    def A103625(n): return (1/8)*(-16*int(n==0) -4 +5*(-1)^n*(3*b(n) +11*b(n-1)) +5*b(n) +19*b(n-1))
    [A103625(n) for n in range(1,41)] # G. C. Greubel, Mar 22 2024

Formula

G.f.: 2*x^3*(1+x+x^2)/((1-x)*(1-4*x+x^2)*(1+4*x+x^2)). - Ralf Stephan, May 18 2007
a(n) = (1/8)*(-16*[n=0] - 4 + 5*(-1)^n*(3*A125905(n) + 11*A125905(n-1)) + (5*A125905(n) + 19*A125905(n-1))), where A125905(n) = ChebyshevU(n, -2). - G. C. Greubel, Mar 22 2024
E.g.f.: (15*cosh(sqrt(3)*x)*(2*cosh(2*x) + sinh(2*x))/2 - sqrt(3)*(4*cosh(x) + sinh(x))*(cosh(x) + 4*sinh(x))*sinh(sqrt(3)*x) - 3*(4 + exp(x)))/6. - Stefano Spezia, Jun 02 2024

Extensions

Terms a(17) onward added by G. C. Greubel, Jul 15 2018
Edited by G. C. Greubel, Mar 22 2024