cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A088700 Number of primes between successive semiprimes.

Original entry on oeis.org

1, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 3, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 08 2003

Keywords

Comments

a(n) = 0 for almost all n. The average order of a(n) is 1/log log n. - Charles R Greathouse IV, Apr 29 2012

Examples

			a(34)=3, as there are three primes between A001358(34)=19*5=95 and A001358(34+1)=53*2=106: 97, 101 and 103.
		

Crossrefs

Cf. A001358, (semiprimes), A088701, A103668 (semiprimes between primes).
Cf. A214520 (primes that are the only prime between consecutive semiprimes).

Programs

  • Mathematica
    Select[Range[400], PrimeOmega[#] == 2&] // PrimePi // Differences (* Jean-François Alcover, Oct 12 2021 *)

Formula

a(n) = A000720(A001358(n+1)) - A000720(A001358(n));
a(A088701(n)) = n and a(k) <> n for 1 <= k < A088701(n).

A103654 Primes which are the average of two successive semiprimes.

Original entry on oeis.org

5, 53, 67, 89, 113, 131, 173, 211, 251, 293, 307, 337, 379, 409, 449, 487, 491, 499, 631, 683, 701, 727, 751, 769, 787, 919, 941, 953, 991, 1009, 1039, 1051, 1063, 1117, 1193, 1259, 1399, 1459, 1471, 1499, 1511, 1567, 1627, 1697, 1709, 1733, 1759, 1787, 1801
Offset: 1

Views

Author

Zak Seidov, Feb 12 2005

Keywords

Examples

			a(3)=67 because 65 and 69 are two successive semiprimes closest to 67 and 67=(65+69)/2;a(333)=22679 because 22677 and 22691 are two successive semiprimes closest to 22679 and 22679=(22677+22681)/2.
		

Crossrefs

Indices of these primes: A103655. Primes: A000040, semiprimes: A001358, number of primes between successive semiprimes: A088700, number of semiprimes between two successive primes: A103668.

Programs

  • PARI
    list(lim)=my(v=List(),u=v,t,lim2=lim+log(lim)^2);forprime(p=2,sqrt(lim2),t=p;forprime(q=p,lim2\t,listput(v,t*q)));v=vecsort(Vec(v));for(i=2,#v,t=(v[i]+v[i-1])/2;if(denominator(t)==1&&isprime(t),if(t>lim,break,listput(u,t))));Vec(u) \\ Charles R Greathouse IV, Oct 08 2012

Formula

p=(q+r)/2, where q

p are two successive semiprimes closest to p.

A103655 Indices of primes which are the average of two successive semiprimes.

Original entry on oeis.org

3, 16, 19, 24, 30, 32, 40, 47, 54, 62, 63, 68, 75, 80, 87, 93, 94, 95, 115, 124, 126, 129, 133, 136, 138, 157, 160, 162, 167, 169, 175, 177, 179, 187, 196, 205, 222, 232, 233, 239, 240, 247, 258, 265, 267, 270, 274, 277, 279, 298, 299, 318, 327, 335, 336, 339
Offset: 1

Views

Author

Zak Seidov, Feb 12 2005

Keywords

Examples

			19 is a member because p(19)=67; 65 and 69 are two successive semiprimes closest to 67 and 67=(65+69)/2.
		

Crossrefs

Corresponding primes: A103654. Primes: A000040, semiprimes: A001358, number of primes between two successive semiprimes: A088700, number of semiprimes between two successive primes: A103668.

Programs

  • Mathematica
    PrimePi[#]&/@Select[Mean/@Partition[Select[Range[2500],PrimeOmega[#]==2&],2,1],PrimeQ] (* Harvey P. Dale, Sep 08 2024 *)

Formula

a(n)=pi(A103654(n)).

A103669 First occurrence of just n semiprimes occurs between the a(n)-th prime and the next prime.

Original entry on oeis.org

1, 2, 4, 11, 24, 34, 30, 47, 221, 259, 189, 375, 429, 217, 1831, 1879, 1229, 3795, 3644, 4522, 2225, 10229, 14862, 4612, 34202, 38590, 66762, 14357, 44227, 40933, 33608, 161441, 31545, 111924, 415069, 278832, 126172, 1576499, 104071, 271743, 786922, 3183065, 4875380, 3166684, 2219883, 6080675, 6443469, 1319945
Offset: 1

Views

Author

Zak Seidov, Feb 12 2005

Keywords

Comments

k(31)>78496, k(32)=31545.
The first occurrence of k in A103668. - Robert G. Wilson v, May 07 2005

Examples

			n=3, k=11, p(11)=31, p(12)=37, three semiprimes between 31 and 37 are 33=3*11, 34=2*17,35=5*7.
		

Crossrefs

Primes: A000040, semiprimes: A001358, number of primes between two successive semiprimes: A088700, number of semiprimes between two successive primes: A103668.

Programs

  • Mathematica
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; f[n_] := Count[fQ /@ Range[Prime[n] + 1, Prime[n + 1] - 1], True];
    t = Table[ f[n], {n, 1600000}]; Position[t, #, 1, 1] & /@ Range[0, 41] // Flatten (* Or *) t = Table[0, {50}]; Do[ a = f[n]; If[ t[[a + 1]] == 0, t[[a + 1]] = n], {n, 1600000}]

Extensions

More terms from Robert G. Wilson v, May 07 2005

A195416 Primes p such that there is only one semiprime number between prime(p) and prime(p+1).

Original entry on oeis.org

2, 3, 19, 29, 31, 59, 73, 149, 179, 199, 211, 271, 281, 311, 337, 347, 349, 359, 433, 449, 479, 523, 547, 659, 661, 683, 727, 733, 809, 821, 823, 829, 857, 877, 947, 977, 983, 1049, 1129, 1181, 1201, 1213, 1291, 1297, 1301, 1307, 1321, 1367, 1429, 1433, 1439, 1451, 1489, 1493, 1511, 1553, 1567
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 17 2011

Keywords

Examples

			a(1)=2 because 2 is a prime and prime(2)=3<(only one semiprime 4)<5=prime(2+1), a(2)=3 because 3 is a prime and prime(3)=5<(only one semiprime 6)<7=prime(3+1), a(3)=19 because 19 is a prime and prime(19)=67<(only one semiprime 69)<71=prime(19+1).
		

Crossrefs

Extensions

Corrected by R. J. Mathar, Sep 20 2011
Showing 1-5 of 5 results.