A103668 Number of semiprimes between prime(n) and prime(n+1).
0, 1, 1, 2, 0, 2, 0, 2, 2, 0, 3, 2, 0, 1, 2, 3, 0, 2, 1, 0, 2, 1, 3, 4, 0, 0, 1, 0, 1, 6, 1, 2, 0, 5, 0, 1, 3, 1, 1, 2, 0, 3, 0, 1, 0, 6, 7, 1, 0, 0, 2, 0, 2, 2, 2, 2, 0, 1, 1, 0, 3, 7, 1, 0, 1, 6, 2, 3, 0, 0, 2, 3, 1, 1, 2, 1, 4, 1, 2, 4, 0, 2, 0, 1, 0, 3, 3, 1, 0, 1, 4, 3, 1, 2, 2, 1, 5, 0, 7, 3, 3, 2, 2, 0, 1
Offset: 1
Examples
a(4)=2 because between prime(4)=7 and prime(5)=11 there are two semiprimes: 3*3 and 2*5. a(11)=3 because between p(11)=31 and p(12)=37 there are three semiprimes: 33=3*11, 34=2*17 and 35=5*7.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Crossrefs
Programs
-
Mathematica
fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; f[n_] := Count[fQ /@ Range[Prime[n] + 1, Prime[n + 1] - 1], True]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, May 07 2005 *) Table[Count[Range[Prime[n],Prime[n+1]],?(PrimeOmega[#]==2&)],{n,110}] (* _Harvey P. Dale, Sep 29 2019 *)
Comments