A103772 Larger of two sides in a (k,k,k-1)-integer-sided triangle with integer area.
1, 17, 241, 3361, 46817, 652081, 9082321, 126500417, 1761923521, 24540428881, 341804080817, 4760716702561, 66308229755041, 923554499868017, 12863454768397201, 179164812257692801, 2495443916839302017, 34757050023492535441, 484103256412056194161
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..850
- J. B. Cosgrave, The Gauss-Factorial Motzkin connection (Maple worksheet, change suffix to .mw)
- J. B. Cosgrave and K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, 118 (Nov. 2011), 812-829.
- Project Euler, Problem 94: Almost Equilateral Triangles.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Programs
-
Magma
I:=[1,17]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+4: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
-
Mathematica
a[1] = 1; a[2] = 17; a[3] = 241; a[n_] := a[n] = 15a[n - 1] - 15a[n - 2] + a[n - 3]; Table[ a[n] - 1, {n, 17}] (* Robert G. Wilson v, Mar 24 2005 *) LinearRecurrence[{15,-15,1},{1,17,241},20] (* Harvey P. Dale, Jan 02 2016 *) RecurrenceTable[{a[1] == 1, a[2] == 17, a[n] == 14 a[n-1] - a[n-2] + 4}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
-
PARI
Vec(x*(1+x)^2/((1-x)*(1-14*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 05 2016
Formula
a(n) = (4*A001570(n+1) - 1)/3, n > 0. - Ralf Stephan, May 20 2007
G.f.: x*(1+x)^2/((1-x)*(1-14*x+x^2)). - Colin Barker, Apr 09 2012
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3); a(1)=1, a(2)=17, a(3)=241. - Harvey P. Dale, Jan 02 2016
a(n) = (-1+(7-4*sqrt(3))^n*(2+sqrt(3))-(-2+sqrt(3))*(7+4*sqrt(3))^n)/3. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 4. - Vincenzo Librandi, Mar 05 2016
Extensions
More terms from Robert G. Wilson v, Mar 24 2005
Comments