cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347110 Primes p such that 2*p+1 and (2*p)^2+(2*p+1)^2 are also prime.

Original entry on oeis.org

2, 11, 41, 281, 641, 761, 1451, 1481, 1811, 2741, 3821, 4211, 4481, 5441, 5501, 7121, 7691, 7901, 8111, 9791, 10061, 10331, 11171, 12011, 13451, 15401, 16001, 16421, 17351, 17981, 18041, 27281, 28961, 30851, 31151, 32561, 33941, 35111, 36191, 43391, 43691, 43721, 45131, 45641, 49331, 49811, 50411, 50591
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 18 2021

Keywords

Comments

All terms except 2 end in 1.

Examples

			a(3) = 41 is a term because 41, 2*41+1 = 83 and (2*41)^2+(2*41+1)^2 = 13613 are prime.
		

Crossrefs

Intersection of A005384 and A103776.

Programs

  • Maple
    filter:= proc(p) isprime(p) and isprime(2*p+1) and isprime(8*p^2+4*p+1) end proc:
    select(filter, [2,seq(i,i=3..100000,2)]);
  • Mathematica
    Select[Prime@ Range[5190], AllTrue[{# + 1, #^2 + (# + 1)^2}, PrimeQ] &[2 #] &] (* Michael De Vlieger, Aug 18 2021 *)
  • PARI
    isok(p) = isprime(p) && isprime(2*p+1) && isprime(8*p^2+4*p+1); \\ Michel Marcus, Aug 18 2021
  • Python
    from sympy import isprime, primerange
    def ok(p): return isprime(2*p+1) and isprime((2*p)**2 + (2*p+1)**2)
    print(list(filter(ok, primerange(1, 50592)))) # Michael S. Branicky, Aug 18 2021
    

A103777 Numbers n such that f[n],f[n+1]and f[n+2] are all primes, where f[n]=8*n^2+4*n+1.

Original entry on oeis.org

15, 50, 80, 110, 230, 245, 425, 570, 635, 645, 710, 925, 1440, 1645, 1710, 1815, 2000, 2465, 2635, 2940, 3040, 3090, 3195, 3525, 4260, 4310, 4400, 4885, 5960, 6145, 7030, 7120, 7250, 8430, 8890, 9445, 10265, 11060, 11150, 11710, 11775, 13020, 13565
Offset: 1

Views

Author

Zak Seidov, Feb 15 2005

Keywords

Comments

All terms are divisible by 5, hence conjecture: there is no such n that f[n],f[n+1],f[n+2] and f[n+3] are primes.

Examples

			15 is a term because f[15]=1861, f[16]=2113 and f[17]=2381 are all primes.
		

Crossrefs

Programs

  • Mathematica
     Flatten[Position[Partition[Table[PrimeQ[8n^2+4n+1],{n,14000}],3,1],{True,True,True}]] (* Harvey P. Dale, Oct 08 2012 *)
Showing 1-2 of 2 results.