cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103940 Number of unrooted bipartite n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 2, 5, 18, 72, 368, 1982, 11514, 69270, 430384, 2736894, 17752884, 117039548, 782480424, 5294705752, 36206357114, 249894328848, 1739030128872, 12191512867814, 86037243899240, 610827161152012, 4360291880624504, 31280354620428378, 225427088761560916, 1631398499577667252
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

Comments

Bipartite planar maps are dual to Eulerian planar maps.

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2 n)) (2^(n - 1) Binomial[2 n, n]/(n+1) + Sum[Boole[0 < k < n] EulerPhi[n/k] d[n/k] 2^(k-1) Binomial[2k, k], {k, Divisors[n]}]) + q[n];
    d[n_] := If[EvenQ[n], 2, 1];
    q[n_] := If[EvenQ[n], 0, 2^((n-1)/2) Binomial[n-1, (n-1)/2]/(n+1)];
    Array[a, 25] (* Jean-François Alcover, Aug 30 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021

Formula

For n > 0, a(n) = (1/(2n))*[2^(n-1)*binomial(2n, n)/(n+1) + Sum_{0A000010, d(n)=2, q(n)=0 if n is even and d(n)=1, q(n)=2^((n-1)/2)*binomial(n-1, (n-1)/2)/(n+1) if n is odd.

Extensions

More terms from Jean-François Alcover, Aug 30 2019
a(0)=1 prepended by Andrew Howroyd, Mar 29 2021