cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065900 Numbers n such that sigma(n) = sigma(n-1) + sigma(n-2).

Original entry on oeis.org

3, 4, 24, 1968, 3264, 5016, 60456, 1016508, 4420164, 12055512, 14365608, 25726728, 27896424, 66562308, 72764736, 98734968, 175186656, 224868312, 253694928, 288657204, 386668344, 421575408, 504737748, 630645456, 1493548000, 1653797796, 2120325012, 2221315152
Offset: 1

Views

Author

Jason Earls, Dec 07 2001

Keywords

Comments

No other terms less than 1000000000. - Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 23 2004

Crossrefs

Programs

  • PARI
    s1=1; s2=3; for(n=3, 10^8, s3=sigma(n); if(s3==s1+s2, print1(n ", ")); s1=s2; s2=s3) /* Donovan Johnson, Apr 06 2013 */

Formula

a(n) = A076530(n) + 1 = A104149(n) + 2. - Alex Ratushnyak, Jul 06 2013

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 23 2004

A076530 Numbers n such that sigma(n) = sigma(n+1) - sigma(n-1).

Original entry on oeis.org

2, 3, 23, 1967, 3263, 5015, 60455, 1016507, 4420163, 12055511, 14365607, 25726727, 27896423, 66562307, 72764735, 98734967, 175186655, 224868311, 253694927, 288657203, 386668343, 421575407, 504737747, 630645455, 1493547999
Offset: 1

Views

Author

Joseph L. Pe, Oct 18 2002

Keywords

Examples

			sigma(24) = 60. sigma(23) = 24. sigma(22) = 36 and 24 = 60 - 36; hence 23 is a term of the sequence.
		

Crossrefs

Programs

Formula

a(n) = A065900(n) - 1 = A104149(n) + 1. - Alex Ratushnyak, Jul 06 2013

Extensions

a(8)-a(25) from Donovan Johnson, Feb 01 2009

A348335 a(n) = smallest k such that the sum of the divisors of the n numbers from k to k+n-1 equals sigma(k+n), or -1 if no such k exists.

Original entry on oeis.org

14, 1, 591357
Offset: 1

Views

Author

Metin Sariyar, Oct 13 2021

Keywords

Comments

a(4) > 10^9, if it exists. - Amiram Eldar, Oct 13 2021

Examples

			a(1) = 14 because sigma(14) = sigma(15) = 24; a(1) = A002961(1).
a(2) = 1 because sigma(1) + sigma(2) = 1 + 3 = 4, the same as sigma(3) = 4; a(2) = A104149(1).
a(3) = 591357 because sigma(591357) + sigma(591358) + sigma(591359) = 866880 + 890352 + 599760 = 2356992, the same as sigma(591360) = 2356992.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{sig = DivisorSigma[1, Range[n]], k = n + 1}, While[(s = DivisorSigma[1, k]) != Plus @@ sig, sig = Join[Drop[sig, 1], {s}]; k++]; k - n]; Array[a, 3] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    isok(m, nb) = sum(i=1, nb, sigma(m+i-1)) == sigma(m+nb);
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Oct 28 2021

A348689 a(n) = sigma(n) + sigma(n+1) - sigma(n+2), where sigma is the sum of divisors.

Original entry on oeis.org

0, 0, 5, 1, 10, 5, 10, 10, 19, 2, 26, 18, 14, 17, 37, 10, 37, 17, 30, 38, 44, 0, 53, 49, 33, 26, 66, 14, 70, 41, 47, 57, 54, 11, 101, 69, 42, 26, 104, 36, 94, 56, 50, 90, 102, -4, 115, 88, 78, 67, 116, 32, 102, 72, 112, 110, 110, -18, 166, 134, 54, 73, 147, 67, 160, 86, 98, 78, 168, 21
Offset: 1

Views

Author

Michel Marcus, Oct 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#+#2-#3&@@DivisorSigma[1,{#,#+1,#+2}]&,100] (* Giorgos Kalogeropoulos, Oct 29 2021 *)
  • PARI
    a(n) = sigma(n)+sigma(n+1) - sigma(n+2);
Showing 1-4 of 4 results.