cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A076530 Numbers n such that sigma(n) = sigma(n+1) - sigma(n-1).

Original entry on oeis.org

2, 3, 23, 1967, 3263, 5015, 60455, 1016507, 4420163, 12055511, 14365607, 25726727, 27896423, 66562307, 72764735, 98734967, 175186655, 224868311, 253694927, 288657203, 386668343, 421575407, 504737747, 630645455, 1493547999
Offset: 1

Views

Author

Joseph L. Pe, Oct 18 2002

Keywords

Examples

			sigma(24) = 60. sigma(23) = 24. sigma(22) = 36 and 24 = 60 - 36; hence 23 is a term of the sequence.
		

Crossrefs

Programs

Formula

a(n) = A065900(n) - 1 = A104149(n) + 1. - Alex Ratushnyak, Jul 06 2013

Extensions

a(8)-a(25) from Donovan Johnson, Feb 01 2009

A291126 Psibonacci numbers: solutions n of the equation psi(n) = psi(n-1) + psi(n-2), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

3, 6, 210, 88200, 101970, 193290, 289680, 993990, 11264550, 59068230, 72776970, 98746230, 122460690, 126500910, 132766770, 234150930, 514442214, 531391650, 638082390, 650428020, 790769790, 1249160790, 3727074450, 4775972850, 8299675650, 9530202210
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

Analogous to phibonacci numbers (A065557) and other sequences (see crossrefs).

Examples

			psi(210) = 576 = 240 + 336 = psi(209) + psi(208), therefore 210 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    psi[n_]:=If[n < 1, 0, n Sum[ MoebiusMu[ d]^2 / d, {d, Divisors @ n}]];
    Select[Range[10^6], psi[#]==psi[#-1]+psi[#-2] &]

Extensions

a(21)-a(26) from Giovanni Resta, Aug 26 2018

A291176 Numbers k such that s(k) = s(k-1) + s(k-2), where s(k) is the sum of proper divisors of k (A001065).

Original entry on oeis.org

3, 8, 20, 146139, 584835, 44814015, 1436395095, 9988999095, 25997557299, 193861767939, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

a(14) > 10^13. - Giovanni Resta, Feb 25 2020

Examples

			s(146139) = 76581 = 75802 + 779 = s(146138) + s(146137), therefore 146139 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    s[n_]:=DivisorSigma[1,n]-n; Select[Range[10^6], s[#]==s[#-1]+s[#-2] &]

Extensions

a(7)-a(10) from Giovanni Resta, Aug 29 2017
a(11)-a(13) from Giovanni Resta, Feb 25 2020

A104149 Numbers k such that sigma(k+2) = sigma(k+1) + sigma(k).

Original entry on oeis.org

1, 2, 22, 1966, 3262, 5014, 60454, 1016506, 4420162, 12055510, 14365606, 25726726, 27896422, 66562306, 72764734, 98734966, 175186654, 224868310, 253694926, 288657202, 386668342, 421575406, 504737746, 630645454, 1493547998, 1653797794, 2120325010, 2221315150
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Aug 16 2010

Keywords

Comments

Apparently all terms > 1 are even. - Zak Seidov, Mar 23 2015
For n <= 95, no a(n) is divisible by 3; a(2), a(25) and a(57) == 2 (mod 3), the rest == 1 (mod 3). - Robert Israel, Mar 23 2015

Examples

			sigma(22) = 1+2+11+22 = 36.
sigma(23) = 1+23 = 24.
sigma(24) = 1+2+3+4+6+8+12+24 = 60.
sigma(24) = sigma(23) + sigma(22).
		

Programs

Formula

a(n) = A065900(n) - 2. - R. J. Mathar, Aug 19 2010
a(n) = A076530(n) - 1. - M. F. Hasler, Aug 19 2010

Extensions

More terms from Zak Seidov and R. J. Mathar, Aug 19 2010

A226361 Numbers n such that sigma(n) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

378624, 661152, 5479092, 5526024, 7179624, 18744216, 122321970, 168201288, 215676636, 778701984, 1482154170, 1788138780, 1974360132, 2288979096, 3361923780, 4214315484, 4757106144, 4971510492, 6264306144, 6884356716, 10730488296, 11375549304, 16851779736
Offset: 1

Views

Author

Alex Ratushnyak, Jun 05 2013

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 10^7; t = {}; sig0 = 1; sig1 = 3; Do[sig2 = DivisorSigma[1, n + 2]; If[sig0 == sig1 + sig2, AppendTo[t, n]]; sig0 = sig1; sig1 = sig2, {n, nn}]; t (* T. D. Noe, Jun 05 2013 *)

Extensions

a(17)-a(23) from Donovan Johnson, Jun 05 2013

A226475 Numbers n such that sigma(n) + sigma(n+1) = sigma(n+2) + sigma(n+3).

Original entry on oeis.org

75, 113, 295, 533, 686, 2130, 14805, 26966, 30235, 35095, 135653, 355675, 432996, 590138, 1214588, 2692853, 2952064, 3375195, 3486795, 5973014, 6880351, 7334956, 22266602, 25841659, 30483834, 37416582, 38390010, 40952513, 41109593, 57242145
Offset: 1

Views

Author

Alex Ratushnyak, Jun 11 2013

Keywords

Comments

Sigma(n) is the sum of the divisors of n: A000203.

Examples

			sigma(75) + sigma(76) = 124 + 140 = 264, and sigma(77) + sigma(78) = 96 + 168 = 264, so 75 is in the sequence.
		

Crossrefs

Programs

A332973 Solutions k of the equation usigma(k) = usigma(k-1) + usigma(k-2) where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

3, 42, 188970, 998670, 51670374, 91397154, 236280786, 259172826, 792554574, 1106710914, 1468869930, 1957827498, 2467823442, 2496238590, 3324585210, 4055970282, 4183629690, 4384566870, 13479861630, 20681058270, 29343074178, 43449285210, 68705958690, 71418085926
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			42 is a term since s(42) = 96 and s(40) + s(41) = 54 + 42 = 96.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[3, 10^8], usigma[#] == usigma[# - 1] + usigma[# - 2] &]
  • PARI
    usigma(k) = sumdivmult(k, d, if(gcd(d, k/d)==1, d)); \\ A034448
    isok(k) = usigma(k) == usigma(k-1) + usigma(k-2); \\ Jinyuan Wang, Mar 08 2020

Extensions

Terms a(22) and beyond from Giovanni Resta, Mar 10 2020

A332975 Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417).

Original entry on oeis.org

3, 24, 360, 5016, 28440, 42066, 50568, 60456, 187176, 998670, 1454706, 12055512, 14365608, 25726728, 27896424, 51670374, 91702962, 141084774, 236280786, 249854952, 386668344, 439362504, 792554574, 1115866152, 1931976696, 2467823442, 2496238590, 2655297558, 2715505440
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]

A348335 a(n) = smallest k such that the sum of the divisors of the n numbers from k to k+n-1 equals sigma(k+n), or -1 if no such k exists.

Original entry on oeis.org

14, 1, 591357
Offset: 1

Views

Author

Metin Sariyar, Oct 13 2021

Keywords

Comments

a(4) > 10^9, if it exists. - Amiram Eldar, Oct 13 2021

Examples

			a(1) = 14 because sigma(14) = sigma(15) = 24; a(1) = A002961(1).
a(2) = 1 because sigma(1) + sigma(2) = 1 + 3 = 4, the same as sigma(3) = 4; a(2) = A104149(1).
a(3) = 591357 because sigma(591357) + sigma(591358) + sigma(591359) = 866880 + 890352 + 599760 = 2356992, the same as sigma(591360) = 2356992.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{sig = DivisorSigma[1, Range[n]], k = n + 1}, While[(s = DivisorSigma[1, k]) != Plus @@ sig, sig = Join[Drop[sig, 1], {s}]; k++]; k - n]; Array[a, 3] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    isok(m, nb) = sum(i=1, nb, sigma(m+i-1)) == sigma(m+nb);
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Oct 28 2021

A076666 Numbers n such that sigma(n) + sigma(n+3) = sigma(n+1) + sigma(n+2).

Original entry on oeis.org

2012, 2096, 15892, 17888, 39916, 102784, 141008, 146227, 482144, 487865, 1321312, 1887008, 2749057, 3513881, 7141158, 16767172, 17503912, 28122834, 30534728, 37453779, 42140437, 60994100, 67777337, 78251933, 113091820, 113768920, 129868059, 199240914, 240859196, 302897372
Offset: 1

Views

Author

Joseph L. Pe, Oct 25 2002

Keywords

Comments

Each term of the sequence marks the start of four consecutive sigma-values for which the sum of the means equals the sum of the extremes.

Examples

			sigma(2012) + sigma(2015) = 3528 + 2688 = 6216; sigma(2013) + sigma(2014) = 2976 + 3240 = 6216, so 2012 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, # ] + DivisorSigma[1, # + 3] == DivisorSigma[1, # + 1] + DivisorSigma[1, # + 2] &]

Extensions

a(6)-a(26) from Donovan Johnson, Feb 01 2009
a(27)-a(30) from Alex Ratushnyak, Jun 29 2013
Showing 1-10 of 16 results. Next