cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A065900 Numbers n such that sigma(n) = sigma(n-1) + sigma(n-2).

Original entry on oeis.org

3, 4, 24, 1968, 3264, 5016, 60456, 1016508, 4420164, 12055512, 14365608, 25726728, 27896424, 66562308, 72764736, 98734968, 175186656, 224868312, 253694928, 288657204, 386668344, 421575408, 504737748, 630645456, 1493548000, 1653797796, 2120325012, 2221315152
Offset: 1

Views

Author

Jason Earls, Dec 07 2001

Keywords

Comments

No other terms less than 1000000000. - Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 23 2004

Crossrefs

Programs

  • PARI
    s1=1; s2=3; for(n=3, 10^8, s3=sigma(n); if(s3==s1+s2, print1(n ", ")); s1=s2; s2=s3) /* Donovan Johnson, Apr 06 2013 */

Formula

a(n) = A076530(n) + 1 = A104149(n) + 2. - Alex Ratushnyak, Jul 06 2013

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 23 2004

A104149 Numbers k such that sigma(k+2) = sigma(k+1) + sigma(k).

Original entry on oeis.org

1, 2, 22, 1966, 3262, 5014, 60454, 1016506, 4420162, 12055510, 14365606, 25726726, 27896422, 66562306, 72764734, 98734966, 175186654, 224868310, 253694926, 288657202, 386668342, 421575406, 504737746, 630645454, 1493547998, 1653797794, 2120325010, 2221315150
Offset: 1

Views

Author

Neven Juric (neven.juric(AT)apis-it.hr), Aug 16 2010

Keywords

Comments

Apparently all terms > 1 are even. - Zak Seidov, Mar 23 2015
For n <= 95, no a(n) is divisible by 3; a(2), a(25) and a(57) == 2 (mod 3), the rest == 1 (mod 3). - Robert Israel, Mar 23 2015

Examples

			sigma(22) = 1+2+11+22 = 36.
sigma(23) = 1+23 = 24.
sigma(24) = 1+2+3+4+6+8+12+24 = 60.
sigma(24) = sigma(23) + sigma(22).
		

Programs

Formula

a(n) = A065900(n) - 2. - R. J. Mathar, Aug 19 2010
a(n) = A076530(n) - 1. - M. F. Hasler, Aug 19 2010

Extensions

More terms from Zak Seidov and R. J. Mathar, Aug 19 2010

A227982 Numbers n such that sigma(n+1) - sigma(n-1) > sigma(n); where sigma(n) = A000203(n) = sum of the divisors of n.

Original entry on oeis.org

47, 59, 83, 107, 119, 143, 167, 179, 215, 239, 251, 263, 299, 335, 359, 383, 395, 419, 431, 467, 479, 503, 527, 539, 587, 599, 623, 629, 647, 659, 671, 719, 755, 767, 779, 839, 863, 887, 899, 923, 935, 959, 983, 1007, 1019, 1055, 1079, 1091, 1103, 1139, 1175
Offset: 1

Views

Author

Jaroslav Krizek, Aug 08 2013

Keywords

Comments

See A076530 - numbers n such that sigma(n+1) - sigma(n-1) = sigma(n).
Complement of union of A076530, A227983 and number 1.

Examples

			Number 59 is in the sequence because sigma(60) - sigma(58) = 168 - 90 = 78 > sigma(59) = 60.
		

Crossrefs

Programs

A227983 Numbers n such that sigma(n+1) - sigma(n-1) < sigma(n); where sigma(n) = A000203(n) = sum of the divisors of n.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Jaroslav Krizek, Aug 08 2013

Keywords

Comments

See A076530 - numbers n such that sigma(n+1) - sigma(n-1) = sigma(n).
Complement of union of A076530, A227982 and number 1.

Examples

			Number 60 is in the sequence because sigma(61) - sigma(59) = 62 - 60 = 2 < sigma(60) = 168.
		

Crossrefs

Programs

A260420 Numbers n such that sigma(n+1) - sigma(n-1) = n+1.

Original entry on oeis.org

2, 3, 23, 14927, 31049, 69107, 246263, 5860169, 307164671, 881198663, 1489455647, 2386555631, 8225563703, 14311679063, 111494234183, 154357775303, 299004519623, 870455062823, 970388922263, 991817878343, 1677028870823, 1782783762503, 1830446935223
Offset: 1

Views

Author

M. F. Hasler, Jul 25 2015

Keywords

Comments

Proposed by Jaroslav Krizek in A260071.
Also: numbers n such that A001065(n+1) = A000203(n-1).

Crossrefs

Programs

  • Magma
    [n: n in [2..5*10^6] | DivisorSigma(1, n+1) - DivisorSigma(1, n-1) eq n+1]; // Vincenzo Librandi, Jul 26 2015
  • Mathematica
    Select[Range@ 1000000, DivisorSigma[1, # + 1] - DivisorSigma[1, # - 1] == # + 1 &] (* Michael De Vlieger, Jul 25 2015 *)
  • PARI
    for(n=2,1e9,sigma(n+1)-sigma(n-1)==n+1&&print1(n","))
    

Formula

a(n) = A246852(n) + 1.

A260071 Primes p such that sigma(p) = sigma(p+1) - sigma(p-1).

Original entry on oeis.org

2, 3, 23, 970388922263, 991817878343, 1677028870823
Offset: 1

Views

Author

Jaroslav Krizek, Jul 14 2015

Keywords

Comments

Primes from A076530 (numbers n such that sigma(n) = sigma(n+1) - sigma(n-1)).
Also primes from sequence A260420 (numbers n such that sigma(n+1) - sigma(n-1) = n+1).
If a number from A246852(n) + 1 is a prime p, then p is in the sequence.
If a(7) exists, it must be bigger than 10^13.

Examples

			23 is in the sequence because sigma(24) - sigma(22) = 60 - 36 = 24 = sigma(23).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and SumOfDivisors(n) eq ((SumOfDivisors(n+1)) - (SumOfDivisors(n-1)))];
    
  • Magma
    [n: n in [A076530(n)] | IsPrime(n)];
    
  • PARI
    is_ok(index)=my(p=prime(index)); p+1==sigma(p+1)-sigma(p-1);
    main(size)=my(v=vector(size),index=1);for(i=1,size,while(!is_ok(index),index++);v[i]=prime(index);index++); v \\ Anders Hellström, Jul 14 2015
    
  • PARI
    has(p)=p+1==sigma(p+1)-sigma(p-1)
    select(has, primes(1000)) \\ Charles R Greathouse IV, Jul 22 2015
Showing 1-6 of 6 results.