cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A187850 T(n,k) is the number of n-step king-knight's tours (piece capable of both kinds of moves) on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 12, 0, 16, 56, 24, 0, 25, 132, 304, 24, 0, 36, 240, 1056, 1400, 0, 0, 49, 380, 2312, 7620, 5328, 0, 0, 64, 552, 4048, 20952, 49776, 16032, 0, 0, 81, 756, 6264, 41652, 177040, 292776, 35328, 0, 0, 100, 992, 8960, 69456, 408048, 1400168, 1533064, 49536, 0, 0
Offset: 1

Views

Author

R. H. Hardin, Mar 14 2011

Keywords

Examples

			Table starts:
.1..4.....9.......16........25........36........49........64.......81.....100
.0.12....56......132.......240.......380.......552.......756......992....1260
.0.24...304.....1056......2312......4048......6264......8960....12136...15792
.0.24..1400.....7620.....20952.....41652.....69456....104268...146088..194916
.0..0..5328....49776....177040....408048....744696...1183632..1723120.2362864
.0..0.16032...292776...1400168...3807828...7700944..13082348.19910456
.0..0.35328..1533064..10353632..33908456..76860784.140714528
.0..0.49536..7067600..71450504.288493336.741624088
.0..0.32256.28260592.458862208
.0..0.....0.96217616
Some n=4 solutions for 4 X 4:
..1..2..0..0....0..1..0..0....1..0..0..0....0..0..0..0....0..0..0..4
..0..0..3..0....2..0..0..0....0..2..0..0....0..0..0..0....0..1..0..3
..0..0..0..0....0..3..0..0....0..3..0..0....0..2..0..0....0..0..2..0
..0..0..0..4....0..0..0..4....0..4..0..0....0..1..3..4....0..0..0..0
		

Crossrefs

Row 2 is A104188(n-1).

Formula

Empirical: T(1,k) = k^2.
Empirical: T(2,k) = 16*k^2 - 36*k + 20.
Empirical: T(3,k) = 240*k^2 - 904*k + 832 for k>3.
Empirical: T(4,k) = 3504*k^2 - 17748*k + 21996 for k>5.
Empirical: T(5,k) = 50128*k^2 - 312688*k + 476944 for k>7.
Empirical: T(6,k) = 706880*k^2 - 5180252*k + 9274644 for k>9.
Empirical: T(7,k) = 9862808*k^2 - 82444808*k + 168212080 for k>11.
Empirical: T(8,k) = 136526552*k^2 - 1275583564*k + 2906368876 for k>13.

A187027 T(n,k) is the number of n-step one or two collinear space at a time queen's tours on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 12, 0, 16, 56, 24, 0, 25, 132, 296, 24, 0, 36, 240, 1008, 1344, 0, 0, 49, 380, 2232, 7056, 5120, 0, 0, 64, 552, 3936, 19568, 45152, 15760, 0, 0, 81, 756, 6120, 39348, 161256, 263000, 36816, 0, 0, 100, 992, 8784, 66360, 376248, 1251720, 1384152, 57904, 0, 0
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2011

Keywords

Examples

			Table starts:
.1..4.....9.......16........25........36.......49........64.......81.....100
.0.12....56......132.......240.......380......552.......756......992....1260
.0.24...296.....1008......2232......3936.....6120......8784....11928...15552
.0.24..1344.....7056.....19568.....39348....66360....100380...141408..189444
.0..0..5120....45152....161256....376248...696992...1121176..1647008.2273384
.0..0.15760...263000...1251720...3443028..7080688..12213336.18821144
.0..0.36816..1384152...9151912..30203792.69641344.129718288
.0..0.57904..6516592..62903536.254189928
.0..0.45856.27116200.405255984
.0..0.....0.98268864
Some n=4 solutions for 4 X 4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..4..0..0....0..0..1..0
..0..0..0..0....0..2..0..0....4..0..1..0....0..0..3..0....0..0..2..0
..3..0..4..0....0..4..0..0....0..0..2..0....1..0..0..0....0..0..3..0
..0..2..0..1....0..3..0..1....0..0..3..0....2..0..0..0....0..4..0..0
		

Crossrefs

Row 2 is A104188(n-1).

A054777 a(n) = 4*n*(4*n-1)*(4*n-2)*(4*n-3).

Original entry on oeis.org

0, 24, 1680, 11880, 43680, 116280, 255024, 491400, 863040, 1413720, 2193360, 3258024, 4669920, 6497400, 8814960, 11703240, 15249024, 19545240, 24690960, 30791400, 37957920, 46308024, 55965360, 67059720, 79727040, 94109400, 110355024, 128618280, 149059680, 171845880
Offset: 0

Views

Author

Henry Bottomley, May 19 2000

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 268.

Crossrefs

Programs

  • Magma
    [4*n*(4*n-1)*(4*n-2)*(4*n-3): n in [0..30]]; // Vincenzo Librandi, Oct 04 2011
  • Mathematica
    a[n_] := 4*n*(4*n-1)*(4*n-2)*(4*n-3); Array[a, 40, 0] (* Amiram Eldar, Mar 08 2022 *)

Formula

a(n) = A052762(4n) = 24*A060541(n).
Sum_{n>=1} 1/a(n) = log(2)/4 - Pi/24 = 0.0423871012404116... [Jolley eq. 242] - Benoit Cloitre, Apr 05 2002
G.f. -24*x*(1 + 65*x + 155*x^2 + 35*x^3) / (x-1)^5. - R. J. Mathar, Oct 03 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = log(sqrt(2)-1)/(6*sqrt(2)) - log(2)/24 + (1/(6*sqrt(2)) - 1/16)*Pi. - Amiram Eldar, Mar 08 2022

A257942 a(n) = (n+1)*(n+2)/A014695(n+1), where A014695 is repeat (1, 2, 2, 1).

Original entry on oeis.org

1, 3, 12, 20, 15, 21, 56, 72, 45, 55, 132, 156, 91, 105, 240, 272, 153, 171, 380, 420, 231, 253, 552, 600, 325, 351, 756, 812, 435, 465, 992, 1056, 561, 595, 1260, 1332, 703, 741, 1560, 1640, 861, 903, 1892, 1980, 1035, 1081, 2256, 2352, 1225, 1275, 2652
Offset: 0

Views

Author

Paul Curtz, Jul 14 2015

Keywords

Comments

Consider, for n >= 0, a sequence s(n). A useful transform is wi(n) = s(0), s(2), s(3), ..., i.e., s(n) without s(1).
For s(n) = 1/(n+1), wi(n)= 1, 1/3, 1/4, 1/5, ..., whose inverse binomial transform is f(n) = 1, -2/3, 7/12, -11/20, 8/15, -11/21, 29/56, -37/72, 23/45, -28/55, 67/132, -79/156, 46/91, -53/105, 121/240, -137/272, ...
The denominator of f(n) is a(n), for n >= 0.
If the numerator of f(n) is b(n), then it can be seen that b(n+1) = -(-1)^n* A226089(n).
Alternating a(n) - b(n) with a(n) + b(n) yields 0, 1, 5, 9, ... = A160050(n+1).
a(4n+1) is linked to the Rydberg-Ritz spectra of hydrogen.
h(n) = 0, 0, 1, 1, 4, 4, 3, 3, 8, 8, 5, 5, ... = duplicated A022998(n).
A022998(n) is linked to the Balmer series (see A246943(n)).
With an initial 0 and offset=0, a(-n) = a(n). Then (a(n+10) - a(n-10))/10 = 1, 6, 10, 7, 9, 22, 26, ... = g(n). a(n) mod 9 is of period 20.

Crossrefs

Cf. A002378(n+1), A014695(n+1)=A130658(n+2), A014634, A033567(n+1), A104188(n+1), 4*A007742(n+1), A160050 (in A226089), A022998, A109613, A000217(n+1), A246943.

Programs

  • Maple
    A257942:=n->(n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2): seq(A257942(n), n=0..100); # Wesley Ivan Hurt, Jul 18 2015
  • Mathematica
    CoefficientList[Series[-(x^6 + 9 x^4 - 8 x^3 + 9 x^2 + 1)/((x - 1)^3 (x^2 + 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jul 14 2015 *)
    (* Using inverse binomial transform *) s[0]=1; s[n_] := 1/(n+2); f[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*s[k], {k, 0, n}]; Table[f[n]//Denominator, {n, 0, 50}] (* Jean-François Alcover, Jul 14 2015 *)
    LinearRecurrence[{3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 3, 12, 20, 15, 21, 56, 72, 45}, 55] (* Vincenzo Librandi, Jul 15 2015 *)
  • PARI
    Vec(-(x^6+9*x^4-8*x^3+9*x^2+1)/((x-1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jul 14 2015
    
  • PARI
    a(n)=(n+1)*(n+2)/if(n%4<2,2,1) \\ Charles R Greathouse IV, Jul 14 2015

Formula

a(4n) = (2*n+1)*(4*n+1).
a(4n+1) = (2*n+1)*(4*n+3).
a(4n+2) = (4*n+3)*(4*n+4).
a(4n+3) = (4*n+4)*(4*n+5).
a(n) = A064038(n+2) * (period 4: repeat 1, 1, 4, 4).
From Colin Barker, Jul 14 2015: (Start)
a(n) = (-1/8+i/8)*(((-3-i*3)+i*(-i)^n+i^n)*(2+3*n+n^2)) where i=sqrt(-1).
G.f.: -(x^6+9*x^4-8*x^3+9*x^2+1) / ((x-1)^3*(x^2+1)^3). (End)
a(n) = h(n+2) * A109613(n+1).
a(n) = (n+1)*(n+2) * period 4:repeat (1, 1, 2, 2) /2.
From Wesley Ivan Hurt, Jul 18 2015: (Start)
a(n) = (n+1)*(n+2)/(3/2+(-1)^((2*n+7+(-1)^n)/4)/2).
a(n) = 3*a(n-1)-6*a(n-2)+10*a(n-3)-12*a(n-4)+12*a(n-5)-10*a(n-6)+6*a(n-7)-3*a(n-8)+a(n-9), n>9. (End)
Sum_{n>=0} 1/a(n) = Pi/4 + 1. - Amiram Eldar, Aug 14 2022
Showing 1-4 of 4 results.