A187850 T(n,k) is the number of n-step king-knight's tours (piece capable of both kinds of moves) on a k X k board summed over all starting positions.
1, 4, 0, 9, 12, 0, 16, 56, 24, 0, 25, 132, 304, 24, 0, 36, 240, 1056, 1400, 0, 0, 49, 380, 2312, 7620, 5328, 0, 0, 64, 552, 4048, 20952, 49776, 16032, 0, 0, 81, 756, 6264, 41652, 177040, 292776, 35328, 0, 0, 100, 992, 8960, 69456, 408048, 1400168, 1533064, 49536, 0, 0
Offset: 1
Examples
Table starts: .1..4.....9.......16........25........36........49........64.......81.....100 .0.12....56......132.......240.......380.......552.......756......992....1260 .0.24...304.....1056......2312......4048......6264......8960....12136...15792 .0.24..1400.....7620.....20952.....41652.....69456....104268...146088..194916 .0..0..5328....49776....177040....408048....744696...1183632..1723120.2362864 .0..0.16032...292776...1400168...3807828...7700944..13082348.19910456 .0..0.35328..1533064..10353632..33908456..76860784.140714528 .0..0.49536..7067600..71450504.288493336.741624088 .0..0.32256.28260592.458862208 .0..0.....0.96217616 Some n=4 solutions for 4 X 4: ..1..2..0..0....0..1..0..0....1..0..0..0....0..0..0..0....0..0..0..4 ..0..0..3..0....2..0..0..0....0..2..0..0....0..0..0..0....0..1..0..3 ..0..0..0..0....0..3..0..0....0..3..0..0....0..2..0..0....0..0..2..0 ..0..0..0..4....0..0..0..4....0..4..0..0....0..1..3..4....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..99
Crossrefs
Row 2 is A104188(n-1).
Formula
Empirical: T(1,k) = k^2.
Empirical: T(2,k) = 16*k^2 - 36*k + 20.
Empirical: T(3,k) = 240*k^2 - 904*k + 832 for k>3.
Empirical: T(4,k) = 3504*k^2 - 17748*k + 21996 for k>5.
Empirical: T(5,k) = 50128*k^2 - 312688*k + 476944 for k>7.
Empirical: T(6,k) = 706880*k^2 - 5180252*k + 9274644 for k>9.
Empirical: T(7,k) = 9862808*k^2 - 82444808*k + 168212080 for k>11.
Empirical: T(8,k) = 136526552*k^2 - 1275583564*k + 2906368876 for k>13.
Comments