cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104275 Numbers k such that 2k-1 is not prime.

Original entry on oeis.org

1, 5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 71, 72, 73, 74, 77, 78, 80, 81, 83, 85, 86, 88, 89, 92, 93, 94, 95, 98, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113
Offset: 1

Views

Author

Alexandre Wajnberg, Apr 17 2005

Keywords

Comments

Same as A053726 except for the first term of this sequence.
Numbers k such that A064216(k) is not prime. - Antti Karttunen, Apr 17 2015
Union of 1 and terms of the form (u+1)*(v+1) + u*v with 1 <= u <= v. - Ralf Steiner, Nov 17 2021

Examples

			a(1) = 1 because 2*1-1=1, not prime.
a(2) = 5 because 2*5-1=9, not prime (2, 3 and 4 give 3, 5 and 7 which are primes).
From _Vincenzo Librandi_, Jan 15 2013: (Start)
As a triangular array (apart from term 1):
   5;
   8,  13;
  11,  18,  25;
  14,  23,  32,  41;
  17,  28,  39,  50,  61;
  20,  33,  46,  59,  72,  85;
  23,  38,  53,  68,  83,  98, 113;
  26,  43,  60,  77,  94, 111, 128, 145;
  29,  48,  67,  86, 105, 124, 143, 162, 181;
  32,  53,  74,  95, 116, 137, 158, 179, 200, 221; etc.
which is obtained by (2*h*k + k + h + 1) with h >= k >= 1. (End)
The above array, which contains the same terms as A053726 but in different order and with some duplicates, has its own entry A144650. - _Antti Karttunen_, Apr 17 2015
		

Crossrefs

Cf. A006254 (complement), A246371 (a subsequence).

Programs

  • Magma
    [n: n in [1..220]| not IsPrime(2*n-1)]; // Vincenzo Librandi, Jan 28 2011
    
  • Maple
    remove(t -> isprime(2*t-1), [$1..1000]); # Robert Israel, Apr 17 2015
  • Mathematica
    Select[Range[115], !PrimeQ[2#-1] &] (* Robert G. Wilson v, Apr 18 2005 *)
  • PARI
    select( {is_A104275(n)=!isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
    
  • Python
    from sympy import isprime
    def ok(n): return not isprime(2*n-1)
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, May 08 2021
    
  • Python
    from sympy import primepi
    def A104275(n):
        if n <= 2: return ((n-1)<<2)+1
        m, k = n-1, (r:=primepi(n-1)) + n - 1 + (n-1>>1)
        while m != k:
            m, k = k, (r:=primepi(k)) + n - 1 + (k>>1)
        return r+n-1 # Chai Wah Wu, Aug 02 2024
    
  • SageMath
    [n for n in (1..250) if not is_prime(2*n-1)] # G. C. Greubel, Oct 17 2023
  • Scheme
    (define (A104275 n) (if (= 1 n) 1 (A053726 (- n 1)))) ;; More code in A053726. - Antti Karttunen, Apr 17 2015
    

Formula

a(n) = A047845(n-1) + 1.
For n > 1, a(n) = A053726(n-1) = n + A008508(n-1). - Antti Karttunen, Apr 17 2015
a(n) = (A014076(n)+1)/2. - Robert Israel, Apr 17 2015

Extensions

More terms from Robert G. Wilson v, Apr 18 2005