A104275 Numbers k such that 2k-1 is not prime.
1, 5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 71, 72, 73, 74, 77, 78, 80, 81, 83, 85, 86, 88, 89, 92, 93, 94, 95, 98, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113
Offset: 1
Examples
a(1) = 1 because 2*1-1=1, not prime. a(2) = 5 because 2*5-1=9, not prime (2, 3 and 4 give 3, 5 and 7 which are primes). From _Vincenzo Librandi_, Jan 15 2013: (Start) As a triangular array (apart from term 1): 5; 8, 13; 11, 18, 25; 14, 23, 32, 41; 17, 28, 39, 50, 61; 20, 33, 46, 59, 72, 85; 23, 38, 53, 68, 83, 98, 113; 26, 43, 60, 77, 94, 111, 128, 145; 29, 48, 67, 86, 105, 124, 143, 162, 181; 32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc. which is obtained by (2*h*k + k + h + 1) with h >= k >= 1. (End) The above array, which contains the same terms as A053726 but in different order and with some duplicates, has its own entry A144650. - _Antti Karttunen_, Apr 17 2015
Links
- Vincenzo Librandi (first 1000 terms) & Antti Karttunen, Table of n, a(n) for n = 1..10001
Crossrefs
Programs
-
Magma
[n: n in [1..220]| not IsPrime(2*n-1)]; // Vincenzo Librandi, Jan 28 2011
-
Maple
remove(t -> isprime(2*t-1), [$1..1000]); # Robert Israel, Apr 17 2015
-
Mathematica
Select[Range[115], !PrimeQ[2#-1] &] (* Robert G. Wilson v, Apr 18 2005 *)
-
PARI
select( {is_A104275(n)=!isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
-
Python
from sympy import isprime def ok(n): return not isprime(2*n-1) print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, May 08 2021
-
Python
from sympy import primepi def A104275(n): if n <= 2: return ((n-1)<<2)+1 m, k = n-1, (r:=primepi(n-1)) + n - 1 + (n-1>>1) while m != k: m, k = k, (r:=primepi(k)) + n - 1 + (k>>1) return r+n-1 # Chai Wah Wu, Aug 02 2024
-
SageMath
[n for n in (1..250) if not is_prime(2*n-1)] # G. C. Greubel, Oct 17 2023
-
Scheme
(define (A104275 n) (if (= 1 n) 1 (A053726 (- n 1)))) ;; More code in A053726. - Antti Karttunen, Apr 17 2015
Formula
a(n) = A047845(n-1) + 1.
a(n) = (A014076(n)+1)/2. - Robert Israel, Apr 17 2015
Extensions
More terms from Robert G. Wilson v, Apr 18 2005
Comments