cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A172048 a(n) = A104275(n) + A014076(n).

Original entry on oeis.org

2, 14, 23, 32, 38, 41, 50, 53, 59, 68, 74, 77, 83, 86, 95, 98, 104, 113, 116, 122, 128, 131, 137, 140, 143, 149, 158, 167, 173, 176, 179, 182, 185, 188, 194, 200, 203, 212, 215, 218, 221, 230, 233, 239, 242, 248, 254, 257, 263, 266, 275, 278, 281, 284, 293
Offset: 1

Views

Author

Roger L. Bagula, Jan 24 2010

Keywords

Comments

Alternatively: the sequence of the numbers 3*k-1 for all nonprime 2*k-1, k >= 1.

Crossrefs

Programs

  • Mathematica
    Flatten[Table[If[PrimeQ[2*n - 1], {}, 3*n - 1], {n, 1, 100}]]

Extensions

The two equivalent definitions separated by the Assoc. Editors of the OEIS, Feb 02 2010

A246371 Numbers n such that, if 2n-1 = Product_{k >= 1} (p_k)^(c_k) then n > Product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

5, 8, 11, 13, 14, 17, 18, 23, 28, 32, 38, 39, 41, 43, 50, 53, 58, 59, 61, 63, 68, 73, 74, 77, 83, 86, 88, 94, 95, 98, 104, 113, 116, 122, 123, 128, 131, 137, 138, 140, 143, 149, 158, 163, 167, 172, 173, 176, 179, 182, 185, 188, 193, 194, 200, 203, 212, 213, 215, 218, 221, 228, 230, 233, 238, 239, 242, 248, 254, 257
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Numbers n such that A064216(n) < n.
Numbers n such that A064989(2n-1) < n.
Note: This sequence has remarkable but possibly merely coincidental overlap with A053726. On Dec 22 2014, Matthijs Coster mistakenly attached a comment intended for that sequence to this one. On Apr 17 2015, Antti Karttunen noted the error. I have moved the comment to the correct sequence, and have removed Karttunen's note. - Allan C. Wechsler, Aug 01 2022

Crossrefs

Complement: A246372.
Setwise difference of A246361 and A048674.
Subsequence of A104275 and A053726 (20 is the first term > 1 which is not in this sequence).
Subsequence: A246374 (the primes present in this sequence).

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    isA246371(n) = (A064216(n) < n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246371(n), i++; write("b246371.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246371 (MATCHING-POS 1 1 (lambda (n) (< (A064216 n) n))))

A053726 "Flag numbers": number of dots that can be arranged in successive rows of K, K-1, K, K-1, K, ..., K-1, K (assuming there is a total of L > 1 rows of size K > 1).

Original entry on oeis.org

5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 71, 72, 73, 74, 77, 78, 80, 81, 83, 85, 86, 88, 89, 92, 93, 94, 95, 98, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113, 116
Offset: 1

Views

Author

Dan Asimov, asimovd(AT)aol.com, Apr 09 2003

Keywords

Comments

Numbers of the form F(K, L) = KL+(K-1)(L-1), K, L > 1, i.e. 2KL - (K+L) + 1, sorted and duplicates removed.
If K=1, L=1 were allowed, this would contain all positive integers.
Positive numbers > 1 but not of the form (odd primes plus one)/2. - Douglas Winston (douglas.winston(AT)srupc.com), Sep 11 2003
In other words, numbers n such that 2n-1, or equally, A064216(n) is a composite number. - Antti Karttunen, Apr 17 2015
Note: the following comment was originally applied in error to the numerically similar A246371. - Allan C. Wechsler, Aug 01 2022
From Matthijs Coster, Dec 22 2014: (Start)
Also area of (over 45 degree) rotated rectangles with sides > 1. The area of such rectangles is 2ab - a - b + 1 = 1/2((2a-1)(2b-1)+1).
Example: Here a = 3 and b = 5. The area = 23.
*
***
*****
*****
*****
***
*
(End)
The smallest integer > k/2 and coprime to k, where k is the n-th odd composite number. - Mike Jones, Jul 22 2024
Numbers k such that A193773(k-1) > 1. - Allan C. Wechsler, Oct 22 2024

Crossrefs

Essentially same as A104275, but without the initial one.
A144650 sorted into ascending order, with duplicates removes.
Cf. A006254 (complement, apart from 1, which is in neither sequence).
Differs from its subsequence A246371 for the first time at a(8) = 20, which is missing from A246371.

Programs

  • PARI
    select( {is_A053726(n)=n>4 && !isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
  • Python
    from sympy import isprime
    def ok(n): return n > 1 and not isprime(2*n-1)
    print(list(filter(ok, range(1, 117)))) # Michael S. Branicky, May 08 2021
    
  • Python
    from sympy import primepi
    def A053726(n):
        if n == 1: return 5
        m, k = n, (r:=primepi(n)) + n + (n>>1)
        while m != k:
            m, k = k, (r:=primepi(k)) + n + (k>>1)
        return r+n # Chai Wah Wu, Aug 02 2024
    
  • Scheme
    ;; with Antti Karttunen's IntSeq-library.
    (define A053726 (MATCHING-POS 1 1 (lambda (n) (and (> n 1) (not (prime? (+ n n -1)))))))
    ;; Antti Karttunen, Apr 17 2015
    
  • Scheme
    ;; with Antti Karttunen's IntSeq-library.
    (define (A053726 n) (+ n (A000720 (A071904 n))))
    ;; Antti Karttunen, Apr 17 2015
    

Formula

a(n) = A008508(n) + n + 1.
From Antti Karttunen, Apr 17 2015: (Start)
a(n) = n + A000720(A071904(n)). [The above formula reduces to this. A000720(k) gives number of primes <= k, and A071904 gives the n-th odd composite number.]
a(n) = A104275(n+1). (End)
a(n) = A116922(A071904(n)). - Mike Jones, Jul 22 2024
a(n) = A047845(n+1)+1. - Amiram Eldar, Jul 30 2024

Extensions

More terms from Douglas Winston (douglas.winston(AT)srupc.com), Sep 11 2003

A014090 Numbers that are not the sum of a square and a prime.

Original entry on oeis.org

1, 10, 25, 34, 58, 64, 85, 91, 121, 130, 169, 196, 214, 226, 289, 324, 370, 400, 526, 529, 625, 676, 706, 730, 771, 784, 841, 1024, 1089, 1225, 1255, 1351, 1414, 1444, 1521, 1681, 1849, 1906, 1936, 2116, 2209, 2304, 2500, 2809, 2986, 3136, 3364, 3481, 3600
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite: if 2n-1 is composite then n^2 is in the sequence. (Proof: If n^2 = x^2 + p with p prime, then p = (n-x)(n+x), so n-x=1 and n+x=p. Hence 2n-1=p is prime, not composite.) - Dean Hickerson, Nov 27 2002
21679 is the last known nonsquare in this sequence. See A020495. - T. D. Noe, Aug 05 2006
A002471(a(n))=0; complement of A014089. - Reinhard Zumkeller, Sep 07 2008
There are no prime numbers in this sequence because at the very least they can be represented as p + 0^2. - Alonso del Arte, May 26 2012
Number of terms <10^k,k=0..8: 1, 8, 27, 75, 223, 719, 2361, 7759, ..., . - Robert G. Wilson v, May 26 2012
So far there are only 21 terms which are not squares and they are the terms of A020495. Those that are squares, their square roots are members of A104275. - Robert G. Wilson v, May 26 2012

Examples

			From _Alonso del Arte_, May 26 2012: (Start)
10 is in the sequence because none of 10 - p_i are square (8, 7, 5, 3) and none of 10 - b^2 are prime (10, 9, 6, 1); i goes from 1 to pi(10) or b goes from 0 to floor(sqrt(10)).
11 is not in the sequence because it can be represented as 3^2 + 2 or 0^2 + 11. (End)
		

Crossrefs

Cf. A064233 (does not allow 0^2).

Programs

  • Mathematica
    t={}; Do[k=0; While[k^2=n, AppendTo[t,n]], {n,25000}]; t (* T. D. Noe, Aug 05 2006 *)
    max = 5000; Complement[Range[max], Flatten[Table[Prime[p] + b^2, {p, PrimePi[max]}, {b, 0, Ceiling[Sqrt[max]]}]]] (* Alonso del Arte, May 26 2012 *)
    fQ[n_] := Block[{j = Sqrt[n], k}, If[ IntegerQ[j] && !PrimeQ[2j - 1], True, k = Floor[j]; While[k > -1 && !PrimeQ[n - k^2], k--]; If[k == -1, True, False]]]; Select[ Range[3600], fQ] (* Robert G. Wilson v, May 26 2012 *)

A153043 Numbers n > 1 such that 2*n-3 is not a prime.

Original entry on oeis.org

2, 6, 9, 12, 14, 15, 18, 19, 21, 24, 26, 27, 29, 30, 33, 34, 36, 39, 40, 42, 44, 45, 47, 48, 49, 51, 54, 57, 59, 60, 61, 62, 63, 64, 66, 68, 69, 72, 73, 74, 75, 78, 79, 81, 82, 84, 86, 87, 89, 90, 93, 94, 95, 96, 99, 102, 103, 104, 105, 106, 108, 109, 110
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One more than the associated value in A104275. - R. J. Mathar, Jan 05 2011
2*A155705(m,n)-3 = (2n+1)*(2m+1) are nonprime: all A155705(.,.) are in this sequence.
The terms after a(1) are the values of 2*h*k + k + h + 2, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

A104278 Numbers m such that 2m+1 and 2m-1 are not primes.

Original entry on oeis.org

13, 17, 25, 28, 32, 38, 43, 46, 47, 58, 59, 60, 61, 62, 67, 71, 72, 73, 77, 80, 85, 88, 92, 93, 94, 101, 102, 103, 104, 107, 108, 109, 110, 118, 122, 123, 124, 127, 130, 133, 137, 143, 144, 145, 148, 149, 150, 151, 152, 160, 161, 162, 163, 164, 167, 170, 171, 172
Offset: 1

Views

Author

Alexandre Wajnberg, Apr 17 2005

Keywords

Comments

Complement of A147820. - Omar E. Pol, Nov 17 2008
m is in the sequence iff A177961(m)Vladimir Shevelev, May 16 2010

Examples

			a(1)=13 is the first number satisfying simultaneously the two rules.
		

Crossrefs

Intersection of A047845 and A104275.

Programs

  • Haskell
    a104278 n = a104278_list !! (n-1)
    a104278_list = [m | m <- [1..],
                        a010051' (2 * m - 1) == 0 && a010051' (2 * m + 1) == 0]
    -- Reinhard Zumkeller, Aug 04 2015
    
  • Mathematica
    Select[ Range[300], !PrimeQ[2# + 1] && !PrimeQ[2# - 1] &] (* Robert G. Wilson v, Apr 18 2005 *)
    Select[Range[300],NoneTrue[2#+{1,-1},PrimeQ]&] (* The program uses the NoneTrue function from Mathematica version 10 *)  (* Harvey P. Dale, Jul 07 2015 *)
  • PARI
    select( {is_A104278(n)=!isprime(2*n-1)&&!isprime(2*n+1)}, [1..222]) \\ M. F. Hasler, Apr 29 2024

Formula

a(n) = (A025583-1)/2. - Bill McEachen, Feb 05 2025

Extensions

More terms from Robert G. Wilson v, Apr 18 2005

A144650 Triangle read by rows where T(m,n) = 2m*n + m + n + 1.

Original entry on oeis.org

5, 8, 13, 11, 18, 25, 14, 23, 32, 41, 17, 28, 39, 50, 61, 20, 33, 46, 59, 72, 85, 23, 38, 53, 68, 83, 98, 113, 26, 43, 60, 77, 94, 111, 128, 145, 29, 48, 67, 86, 105, 124, 143, 162, 181, 32, 53, 74, 95, 116, 137, 158, 179, 200, 221, 35, 58, 81, 104, 127, 150, 173, 196, 219, 242, 265
Offset: 1

Views

Author

Vincenzo Librandi, Jan 13 2009

Keywords

Comments

First column: A016789, second column: A016885, third column: A017029, fourth column: A017221, fifth column: A017461. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   5;
   8, 13;
  11, 18, 25;
  14, 23, 32, 41;
  17, 28, 39, 50,  61;
  20, 33, 46, 59,  72,  85;
  23, 38, 53, 68,  83,  98, 113;
  26, 43, 60, 77,  94, 111, 128, 145;
  29, 48, 67, 86, 105, 124, 143, 162, 181;
  32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
		

Crossrefs

Columns k: A016789 (k=1), A016885 (k=2), A017029 (k=3), A017221 (k=4), A017461 (k=5).

Programs

  • Magma
    [2*n*k + n + k + 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Mathematica
    T[n_,k_]:= 2 n*k + n + k + 1; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • SageMath
    flatten([[2*n*k+n+k+1 for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 14 2023

Formula

Sum_{n=1..m} T(m, n) = m*(2*m+3)*(m+1)/2 = A160378(n+1) (row sums). - R. J. Mathar, Jan 15 2009, Jan 05 2011
From G. C. Greubel, Oct 14 2023: (Start)
T(n, n) = A001844(n).
T(n, n-1) = A001105(n), n >= 2.
T(n, n-2) = A142463(n-1), n >= 3.
T(n, n-3) = (-1)*A147973(n+2), n >= 4.
Sum_{k=1..n} (-1)^k*T(n, k) = (-1)^n*A007742(floor((n+1)/2)).
G.f.: x*y*(5 - 2*x - 2*x*y - 2*x^2*y + x^2*y^2)/((1-x)^2*(1-x*y)^3). (End)

A356360 Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).

Original entry on oeis.org

5, 7, 3, 11, 13, 1, 17, 19, 1, 23, 1, 1, 29, 31, 1, 1, 37, 1, 41, 43, 1, 47, 1, 1, 53, 1, 1, 59, 61, 1, 1, 67, 1, 71, 73, 1, 1, 79, 1, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 1, 1, 1, 127, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1, 149, 151, 1, 1, 157, 1, 1, 163, 1, 167
Offset: 3

Views

Author

Mohammed Bouras, Oct 15 2022

Keywords

Comments

Conjecture: The sequence contains only 1's and the primes.
Similar continued fraction to A356247.
Same as A128059(n), A145737(n-1) and A097302(n-2) for n > 5.
a(n) = 1 positions appear to correspond to A104275(m), m > 2. Conjecture: all odd primes are seen in order after 11. - Bill McEachen, Aug 05 2024

Crossrefs

Programs

  • Python
    from math import gcd, factorial
    def A356360(n): return (a:=(n<<1)-1)//gcd(a, a*sum(factorial(k) for k in range(n-2))+n*factorial(n-2)>>1) # Chai Wah Wu, Feb 26 2024

Formula

For n >= 3, the formula of the continued fraction is as follows:
(A051403(n-2) + A051403(n-3))/(2n - 1) = 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+1))))).
a(n) = (2n - 1)/gcd(2n - 1, A051403(n-2) + A051403(n-3)).
From the conjecture: Except for n = 5, a(n)= 2n - 1 if 2n-1 is prime, 1 otherwise.

A153041 Numbers n >=10 such that 2*n-19 is not a prime.

Original entry on oeis.org

10, 14, 17, 20, 22, 23, 26, 27, 29, 32, 34, 35, 37, 38, 41, 42, 44, 47, 48, 50, 52, 53, 55, 56, 57, 59, 62, 65, 67, 68, 69, 70, 71, 72, 74, 76, 77, 80, 81, 82, 83, 86, 87, 89, 90, 92, 94, 95, 97, 98, 101, 102, 103, 104
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One more than associated values in A153051, two more than A153047. - R. J. Mathar, Jan 05 2011
The terms after a(1) are the values of 2*h*k + k + h + 10, where h and k are positive integers.- Vincenzo Librandi, Jan 19 2013

Crossrefs

Numbers n such that 2n-k is not prime: A104275 (k=1), A153043 (k=3), A153040 (k=5), A153039 (k=7), A153044 (k=9), A153045 (k=11), A153049 (k=13), A153047 (k=15), A153051 (k=17), A153041 (k=19).
Similar sequence listed also in A089559, A153144.

Programs

  • Magma
    [n: n in [10..150] | not IsPrime(2*n - 19)]; // Vincenzo Librandi, Jan 19 2013
  • Mathematica
    Select[Range[10, 200], !PrimeQ[2 # - 19] &] (* Vincenzo Librandi, Jan 19 2013 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A153045 Numbers k such that 2*k-11 is not a prime.

Original entry on oeis.org

10, 13, 16, 18, 19, 22, 23, 25, 28, 30, 31, 33, 34, 37, 38, 40, 43, 44, 46, 48, 49, 51, 52, 53, 55, 58, 61, 63, 64, 65, 66, 67, 68, 70, 72, 73, 76, 77, 78, 79, 82, 83, 85, 86, 88, 90, 91, 93, 94, 97, 98, 99, 100, 103, 106, 107, 108, 109, 110, 112, 113, 114
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

The terms are the values of 2*h*k + k + h + 6, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

  • Magma
    [n: n in [7..120] | not IsPrime(2*n - 11)]; // Vincenzo Librandi, Oct 11 2012
    
  • Mathematica
    Select[Range[10,200], !PrimeQ[2*#-11]&] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2012 *)
  • Python
    from sympy import isprime
    def ok(n): return n > 6 and not isprime(2*n-11)
    print(list(filter(ok, range(115)))) # Michael S. Branicky, Oct 13 2021

Formula

a(n) = 5+A104275(n+1). [R. J. Mathar, Oct 22 2009]
Showing 1-10 of 14 results. Next