cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A153039 Numbers k such that 2*k-7 is composite.

Original entry on oeis.org

8, 11, 14, 16, 17, 20, 21, 23, 26, 28, 29, 31, 32, 35, 36, 38, 41, 42, 44, 46, 47, 49, 50, 51, 53, 56, 59, 61, 62, 63, 64, 65, 66, 68, 70, 71, 74, 75, 76, 77, 80, 81, 83, 84, 86, 88, 89, 91, 92, 95, 96, 97, 98, 101, 104, 105, 106, 107, 108, 110, 111, 112
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Two more than the associated value in A153043, one more than in A153040.

Crossrefs

Complement of A089192, A153040.

Programs

Extensions

Partially edited by N. J. A. Sloane, Jun 23 2010

A153040 Numbers n>3 such that 2*n-5 is not a prime.

Original entry on oeis.org

7, 10, 13, 15, 16, 19, 20, 22, 25, 27, 28, 30, 31, 34, 35, 37, 40, 41, 43, 45, 46, 48, 49, 50, 52, 55, 58, 60, 61, 62, 63, 64, 65, 67, 69, 70, 73, 74, 75, 76, 79, 80, 82, 83, 85, 87, 88, 90, 91, 94, 95, 96, 97, 100, 103, 104, 105, 106, 107, 109, 110, 111
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One less than the associated number in A153039; one more than that in A153043. - R. J. Mathar Dec 20 2008

Crossrefs

Programs

Formula

Let p = prime number n = (p^2+5)/2 mod (p)

Extensions

Flipped sign in definition. - R. J. Mathar, Dec 20 2008

A153041 Numbers n >=10 such that 2*n-19 is not a prime.

Original entry on oeis.org

10, 14, 17, 20, 22, 23, 26, 27, 29, 32, 34, 35, 37, 38, 41, 42, 44, 47, 48, 50, 52, 53, 55, 56, 57, 59, 62, 65, 67, 68, 69, 70, 71, 72, 74, 76, 77, 80, 81, 82, 83, 86, 87, 89, 90, 92, 94, 95, 97, 98, 101, 102, 103, 104
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One more than associated values in A153051, two more than A153047. - R. J. Mathar, Jan 05 2011
The terms after a(1) are the values of 2*h*k + k + h + 10, where h and k are positive integers.- Vincenzo Librandi, Jan 19 2013

Crossrefs

Numbers n such that 2n-k is not prime: A104275 (k=1), A153043 (k=3), A153040 (k=5), A153039 (k=7), A153044 (k=9), A153045 (k=11), A153049 (k=13), A153047 (k=15), A153051 (k=17), A153041 (k=19).
Similar sequence listed also in A089559, A153144.

Programs

  • Magma
    [n: n in [10..150] | not IsPrime(2*n - 19)]; // Vincenzo Librandi, Jan 19 2013
  • Mathematica
    Select[Range[10, 200], !PrimeQ[2 # - 19] &] (* Vincenzo Librandi, Jan 19 2013 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A153045 Numbers k such that 2*k-11 is not a prime.

Original entry on oeis.org

10, 13, 16, 18, 19, 22, 23, 25, 28, 30, 31, 33, 34, 37, 38, 40, 43, 44, 46, 48, 49, 51, 52, 53, 55, 58, 61, 63, 64, 65, 66, 67, 68, 70, 72, 73, 76, 77, 78, 79, 82, 83, 85, 86, 88, 90, 91, 93, 94, 97, 98, 99, 100, 103, 106, 107, 108, 109, 110, 112, 113, 114
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

The terms are the values of 2*h*k + k + h + 6, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

  • Magma
    [n: n in [7..120] | not IsPrime(2*n - 11)]; // Vincenzo Librandi, Oct 11 2012
    
  • Mathematica
    Select[Range[10,200], !PrimeQ[2*#-11]&] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2012 *)
  • Python
    from sympy import isprime
    def ok(n): return n > 6 and not isprime(2*n-11)
    print(list(filter(ok, range(115)))) # Michael S. Branicky, Oct 13 2021

Formula

a(n) = 5+A104275(n+1). [R. J. Mathar, Oct 22 2009]

A153047 Numbers n such that 2*n-15 is not a prime.

Original entry on oeis.org

12, 15, 18, 20, 21, 24, 25, 27, 30, 32, 33, 35, 36, 39, 40, 42, 45, 46, 48, 50, 51, 53, 54, 55, 57, 60, 63, 65, 66, 67, 68, 69, 70, 72, 74, 75, 78, 79, 80, 81, 84, 85, 87, 88, 90, 92, 93, 95, 96, 99, 100, 101, 102, 105, 108, 109, 110, 111, 112, 114, 115, 116
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One more than the associated entry in A153049. - R. J. Mathar, Jan 05 2011
The terms are the values of 2*h*k + k + h + 8, where h and k are positive integers.- Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

A155705 Triangle read by rows where T(m,n) = 2*m*n + m + n + 2.

Original entry on oeis.org

6, 9, 14, 12, 19, 26, 15, 24, 33, 42, 18, 29, 40, 51, 62, 21, 34, 47, 60, 73, 86, 24, 39, 54, 69, 84, 99, 114, 27, 44, 61, 78, 95, 112, 129, 146, 30, 49, 68, 87, 106, 125, 144, 163, 182, 33, 54, 75, 96, 117, 138, 159, 180, 201, 222, 36, 59, 82, 105, 128, 151
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

2*T(m,n)-3 = (2*m+1)*(2*n+1) is not prime, obviously. Also: first column: 3*A020725; second column: A016897; third column: A017041; fourth column: 3*A016789. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
6;
9,  14;
12, 19, 26;
15, 24, 33, 42;
18, 29, 40, 51, 62;
21, 34, 47, 60, 73,  86;
24, 39, 54, 69, 84,  99,  114;
27, 44, 61, 78, 95,  112, 129, 146;
30, 49, 68, 87, 106, 125, 144, 163, 182;
33, 54, 75, 96, 117, 138, 159, 180, 201, 222; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 2: k in [1..n],  n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k + 2; Table[t[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A345447 Numbers of the form i+j+2*i*j and 2+i+j+2*i*j for i,j >= 1.

Original entry on oeis.org

4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Davide Rotondo, Jun 19 2021

Keywords

Comments

Except for 1 and 2 the complement sequence c is: 3, 5, 8, 11, 20, 23, 35, 41, 50, 53, 56, 65, ...; where 2*c(i) + 1 and 2*c(i) - 3 are a pair of cousin primes. This is a consequence of the sieve of Sundaram.

Examples

			For i,j = 1, 1+1+2*1*1 = 4 and 2+1+1+2*1*1 = 6.
		

Crossrefs

Union of A047845 and A153043, except for 0 and 2.

Programs

  • Python
    def aupto(limit):
        aset = set()
        for i in range(1, limit//3):
            for j in range(i, limit//3):
                t = i + j + 2*i*j
                if t > limit: break
                aset.update([t, t+2])
        return sorted(an for an in aset if an <= limit)
    print(aupto(80)) # Michael S. Branicky, Jul 05 2021
Showing 1-7 of 7 results.