cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A154685 Triangle read by rows: T(n, k) = 2*n*k + n + k + 4.

Original entry on oeis.org

8, 11, 16, 14, 21, 28, 17, 26, 35, 44, 20, 31, 42, 53, 64, 23, 36, 49, 62, 75, 88, 26, 41, 56, 71, 86, 101, 116, 29, 46, 63, 80, 97, 114, 131, 148, 32, 51, 70, 89, 108, 127, 146, 165, 184, 35, 56, 77, 98, 119, 140, 161, 182, 203, 224, 38, 61, 84, 107, 130, 153, 176, 199, 222, 245, 268
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

The terms form a subset of A153039 because 2*T(n, k) - 7 = (2*n+1)*(2*k+1) are not prime.

Examples

			Triangle begins:
   8;
  11, 16;
  14, 21, 28;
  17, 26, 35, 44;
  20, 31, 42, 53,  64;
  23, 36, 49, 62,  75,  88;
  26, 41, 56, 71,  86, 101, 116;
  29, 46, 63, 80,  97, 114, 131, 148;
  32, 51, 70, 89, 108, 127, 146, 165, 184;
  35, 56, 77, 98, 119, 140, 161, 182, 203, 224;
		

Crossrefs

Cf. A151675 (row sums).
Similar triangle: A155724.
Columns k: A016789 (k=1), A016861 (k=2).
Main diagonal: A137882, A271649.

Programs

Formula

Sum_{k=1..n} T(n, k) = A151675(n). - N. J. A. Sloane, May 31 2009
T(n, k) = A155724(n,k) + 8. - L. Edson Jeffery, Oct 12 2012
From G. C. Greubel, Jan 21 2025: (Start)
T(2*n-1, n) = 4*n^2 + n + 3.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1/4)*(9*(1-(-1)^n) + 2*(2-3*(-1)^n)*n - 4*(-1)^n*n^2).
G.f.: x*y*(8 - 5*(x+y) + 4*x*y)/((1-x)*(1-y))^2.
E.g.f.: 4 - (4+x)*exp(x) - (4+y)*exp(y) + (4+x+y+2*x*y)*exp(x+y).
(End)

Extensions

Clarified comment. - R. J. Mathar, Jan 24 2009

A153040 Numbers n>3 such that 2*n-5 is not a prime.

Original entry on oeis.org

7, 10, 13, 15, 16, 19, 20, 22, 25, 27, 28, 30, 31, 34, 35, 37, 40, 41, 43, 45, 46, 48, 49, 50, 52, 55, 58, 60, 61, 62, 63, 64, 65, 67, 69, 70, 73, 74, 75, 76, 79, 80, 82, 83, 85, 87, 88, 90, 91, 94, 95, 96, 97, 100, 103, 104, 105, 106, 107, 109, 110, 111
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One less than the associated number in A153039; one more than that in A153043. - R. J. Mathar Dec 20 2008

Crossrefs

Programs

Formula

Let p = prime number n = (p^2+5)/2 mod (p)

Extensions

Flipped sign in definition. - R. J. Mathar, Dec 20 2008

A153041 Numbers n >=10 such that 2*n-19 is not a prime.

Original entry on oeis.org

10, 14, 17, 20, 22, 23, 26, 27, 29, 32, 34, 35, 37, 38, 41, 42, 44, 47, 48, 50, 52, 53, 55, 56, 57, 59, 62, 65, 67, 68, 69, 70, 71, 72, 74, 76, 77, 80, 81, 82, 83, 86, 87, 89, 90, 92, 94, 95, 97, 98, 101, 102, 103, 104
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One more than associated values in A153051, two more than A153047. - R. J. Mathar, Jan 05 2011
The terms after a(1) are the values of 2*h*k + k + h + 10, where h and k are positive integers.- Vincenzo Librandi, Jan 19 2013

Crossrefs

Numbers n such that 2n-k is not prime: A104275 (k=1), A153043 (k=3), A153040 (k=5), A153039 (k=7), A153044 (k=9), A153045 (k=11), A153049 (k=13), A153047 (k=15), A153051 (k=17), A153041 (k=19).
Similar sequence listed also in A089559, A153144.

Programs

  • Magma
    [n: n in [10..150] | not IsPrime(2*n - 19)]; // Vincenzo Librandi, Jan 19 2013
  • Mathematica
    Select[Range[10, 200], !PrimeQ[2 # - 19] &] (* Vincenzo Librandi, Jan 19 2013 *)

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A153037 a(n) = 2*n^2 + 16*n + 23.

Original entry on oeis.org

23, 41, 63, 89, 119, 153, 191, 233, 279, 329, 383, 441, 503, 569, 639, 713, 791, 873, 959, 1049, 1143, 1241, 1343, 1449, 1559, 1673, 1791, 1913, 2039, 2169, 2303, 2441, 2583, 2729, 2879, 3033, 3191, 3353, 3519, 3689, 3863, 4041, 4223, 4409, 4599, 4793, 4991, 5193
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

Sixth diagonal of triangle A154685.
Numbers of the form 2*k^2 - 9. - Bruno Berselli, Oct 30 2012

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 22 2012
G.f.: (23 - 28*x + 9*x^2)/(1-x)^3. - Vincenzo Librandi, Jan 04 2013
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=0} 1/a(n) = 137/126 - cot(3*Pi/sqrt(2))*Pi/(6*sqrt(2)).
Sum_{n>=0} (-1)^n/a(n) = 43/42 - cosec(3*Pi/sqrt(2))*Pi/(6*sqrt(2)). (End)
E.g.f.: exp(x)*(23 + 18*x + 2*x^2). - Elmo R. Oliveira, Feb 08 2025

Extensions

Erroneously duplicated terms removed by Vincenzo Librandi, Feb 22 2012

A153044 Numbers n such that 2*n-9 is not a prime.

Original entry on oeis.org

5, 9, 12, 15, 17, 18, 21, 22, 24, 27, 29, 30, 32, 33, 36, 37, 39, 42, 43, 45, 47, 48, 50, 51, 52, 54, 57, 60, 62, 63, 64, 65, 66, 67, 69, 71, 72, 75, 76, 77, 78, 81, 82, 84, 85, 87, 89, 90, 92, 93, 96, 97, 98, 99, 102, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 117, 120
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

One more than the associated entry in A153039. - R. J. Mathar, Jan 05 2011
The terms after a(1) are the values of 2*h*k + k + h + 5, where h and k are positive integers. - Vincenzo Librandi, Jan 19 2013

Crossrefs

Programs

  • Magma
    [n: n in [5..121] | not IsPrime(2*n-9)]; // Bruno Berselli, Mar 05 2011
  • Mathematica
    Select[Range[150],!PrimeQ[2#-9]&]  (* Harvey P. Dale, Mar 05 2011 *)

Extensions

Corrected and extended by N. J. A. Sloane, May 29 2010
Showing 1-5 of 5 results.