A104278 Numbers m such that 2m+1 and 2m-1 are not primes.
13, 17, 25, 28, 32, 38, 43, 46, 47, 58, 59, 60, 61, 62, 67, 71, 72, 73, 77, 80, 85, 88, 92, 93, 94, 101, 102, 103, 104, 107, 108, 109, 110, 118, 122, 123, 124, 127, 130, 133, 137, 143, 144, 145, 148, 149, 150, 151, 152, 160, 161, 162, 163, 164, 167, 170, 171, 172
Offset: 1
Examples
a(1)=13 is the first number satisfying simultaneously the two rules.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a104278 n = a104278_list !! (n-1) a104278_list = [m | m <- [1..], a010051' (2 * m - 1) == 0 && a010051' (2 * m + 1) == 0] -- Reinhard Zumkeller, Aug 04 2015
-
Mathematica
Select[ Range[300], !PrimeQ[2# + 1] && !PrimeQ[2# - 1] &] (* Robert G. Wilson v, Apr 18 2005 *) Select[Range[300],NoneTrue[2#+{1,-1},PrimeQ]&] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 07 2015 *)
-
PARI
select( {is_A104278(n)=!isprime(2*n-1)&&!isprime(2*n+1)}, [1..222]) \\ M. F. Hasler, Apr 29 2024
Formula
a(n) = (A025583-1)/2. - Bill McEachen, Feb 05 2025
Extensions
More terms from Robert G. Wilson v, Apr 18 2005
Comments