cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A105041 Positive integers k such that k^7 + 1 is semiprime.

Original entry on oeis.org

2, 10, 16, 18, 46, 52, 66, 72, 78, 106, 136, 148, 226, 228, 240, 262, 282, 330, 442, 508, 616, 630, 732, 750, 756, 768, 810, 828, 910, 936, 982, 1032, 1060, 1128, 1216, 1302, 1366, 1558, 1626, 1696, 1698, 1758, 1800, 1810, 1830, 1932, 1996, 2002, 2026, 2080
Offset: 1

Views

Author

Jonathan Vos Post, Apr 03 2005

Keywords

Comments

We have the polynomial factorization n^7+1 = (n+1) * (n^6 - n^5 + n^4 - n^3 + n^2 - n + 1). Hence after the initial n=1 prime, the binomial can at best be semiprime and that only when both (n+1) and (n^6 - n^5 + n^4 - n^3 + n^2 - n + 1) are primes.

Examples

			n n^7+1 = (n+1) * (n^6 - n^5 + n^4 - n^3 + n^2 - n + 1).
2 129 = 3 * 43
10 10000001 = 11 * 909091
16 268435457 = 17 * 15790321
18 612220033 = 19 * 32222107
46 435817657217 = 47 * 9272716111
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..2100] | IsSemiprime(n^7+1)]; // Vincenzo Librandi, Mar 12 2015
    
  • Mathematica
    Select[Range[0,200000], PrimeQ[# + 1] && PrimeQ[(#^7 + 1)/(# + 1)] &] (* Robert Price, Mar 11 2015 *)
    Select[Range[2500], Plus@@Last/@FactorInteger[#^7 + 1]==2 &] (* Vincenzo Librandi, Mar 12 2015 *)
    Select[Range[2100],PrimeOmega[#^7+1]==2&] (* Harvey P. Dale, Jun 18 2019 *)
  • PARI
    is(n)=isprime(n+1) && isprime((n^7+1)/(n+1)) \\ Charles R Greathouse IV, Aug 31 2021

Formula

a(n)^7 + 1 is semiprime. a(n)+1 is prime and a(n)^6 - a(n)^5 + a(n)^4 - a(n)^3 + a(n)^2 - a(n) + 1 is prime.

Extensions

More terms from R. J. Mathar, Dec 14 2009

A103854 Positive integers n such that n^6 + 1 is semiprime.

Original entry on oeis.org

2, 4, 10, 36, 56, 94, 126, 224, 260, 270, 300, 350, 686, 716, 780, 1036, 1070, 1080, 1156, 1174, 1210, 1394, 1416, 1434, 1440, 1460, 1524, 1550, 1576, 1616, 1654, 1660, 1700, 1756, 1860, 1980, 2054, 2084, 2096, 2116, 2224, 2454, 2600, 2664, 2770, 2864
Offset: 1

Views

Author

Jonathan Vos Post, Mar 31 2005

Keywords

Comments

n^6+1 can only be prime when n = 1, n^6+1 = 2. This is because the sum of cubes formula gives the polynomial factorization n^6+1 = (n^2+1) * (n^4 - n^2 + 1). Hence n^6+1 can only be semiprime when both (n^2+1) and (n^4 - n^2 + 1) are primes.

Examples

			n n^6+1 = (n^2+1) * (n^4 - n^2 + 1)
2 65 = 5 * 13
4 4097 = 17 * 241
10 1000001 = 101 * 9901
36 2176782337 = 1297 * 1678321
56 30840979457 = 3137 * 9831361
94 689869781057 = 8837 * 78066061
126 4001504141377 = 15877 * 252031501
224 126324651851777 = 50177 * 2517580801
		

Crossrefs

Programs

  • Mathematica
    semiprimeQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ 2Range@1526, semiprimeQ[ #^6 + 1] &] (* Robert G. Wilson v, May 26 2006 *)
    Select[Range[200000], PrimeQ[#^2 + 1] && PrimeQ[(#^6 + 1)/(#^2 + 1)] &] (* Robert Price, Mar 11 2015 *)
  • PARI
    is(n)=my(s=n^2); isprime(s+1) && isprime(s^2-s+1) \\ Charles R Greathouse IV, Aug 31 2021

Formula

a(n)^6 + 1 is semiprime. (a(n)^2+1) is prime and (a(n)^4 - a(n)^2 + 1) is prime.

Extensions

More terms from Robert G. Wilson v, May 26 2006

A104494 Positive integers n such that n^17 + 1 is semiprime (A001358).

Original entry on oeis.org

2, 58, 66, 166, 268, 270, 408, 600, 672, 808, 822, 970, 1050, 1090, 1150, 1200, 1212, 1380, 1578, 1752, 1912, 1950, 1986, 2016, 2038, 2292, 2340, 2548, 2590, 2656, 2718, 2800, 2856, 3162, 3300, 3342, 3738, 4138, 4152, 4228, 4270, 4272, 4362, 4782, 5080, 5166
Offset: 1

Views

Author

Jonathan Vos Post, Apr 19 2005

Keywords

Examples

			2^17 + 1 = 131073 = 3 * 43691,
58^17 + 1 = 951208868148684143308060622849 = 59 * 16122184205909900734034925811,
66^17 + 1 = 8555529718761317069203003539457 = 67 * 127694473414348015958253784171,
1050^17 + 1 = 2292018317801032401637344360351562500000000000000001 = 1051 * 2180797638250268698037435166842590390104662226451.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1200]|IsSemiprime(n^17+1)]; // Vincenzo Librandi, Mar 10 2015
  • Mathematica
    Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^17 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *)
    Select[Range[5200],PrimeOmega[#^17+1]==2&] (* Harvey P. Dale, Mar 07 2017 *)
  • PARI
    for(n=1,3000,if(!ispseudoprime(n^17+1),forprime(p=1,10^4,if((n^17+1)%p==0,if(ispseudoprime((n^17+1)/p),print1(n,", "));break)))) \\ Derek Orr, Mar 09 2015
    

Formula

a(n)^17 + 1 is semiprime (A001358).

Extensions

a(14)-a(46) from Robert Price, Mar 09 2015

A105122 Positive integers n such that n^11 + 1 is semiprime.

Original entry on oeis.org

2, 6, 12, 232, 262, 280, 330, 430, 508, 772, 786, 852, 1012, 1522, 1566, 1626, 1810, 2346, 2556, 2676, 3658, 3888, 3910, 4018, 4048, 4258, 4830, 5188, 5322, 5478, 5848, 6090, 6366, 6568, 7018, 7458, 7602, 7606, 7822, 8178, 8928, 9420, 9618, 9676, 10398
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2005

Keywords

Comments

Since n^11 + 1 = (n+1) * (n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1), n^11 + 1 can be prime only if both (n+1) and (n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1) are prime.

Examples

			2^11+1 = 2049 = 3 * 683,
6^11+1 = 362797057 = 7 * 51828151,
1012^11+1 = 1140212079231804336089593374834689 = 1013 * 1125579545144920371263172137053.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[10721], PrimeQ[ # + 1] && PrimeQ[(#^11 + 1)/(# + 1)] &] (* Robert G. Wilson v, Apr 09 2005 *)

Extensions

More terms from Robert G. Wilson v, Apr 09 2005

A104479 Positive integers n such that n^16 + 1 is semiprime (A001358).

Original entry on oeis.org

3, 4, 9, 12, 14, 16, 18, 20, 26, 29, 40, 41, 48, 58, 70, 73, 81, 87, 92, 96, 104, 111, 113, 114, 118, 122, 130, 140, 142, 144, 146, 150, 157, 162, 164, 167, 168, 172, 173, 184, 187, 192, 194, 195, 199, 200, 202, 208, 220, 230, 232, 244, 253, 256, 266, 278, 292, 295, 298
Offset: 1

Views

Author

Jonathan Vos Post, Apr 18 2005

Keywords

Comments

n^16 + 1 is an irreducible polynomial over Z and thus can be either prime (A006313) or semiprime.

Examples

			3^16 + 1 = 43046722 = 2 * 21523361,
4^16 + 1 = 4294967297 = 641 * 6 700417,
9^16 + 1 = 1853020188851842 = 2 * 926510094425921,
12^16 + 1 = 184884258895036417 = 153953 * 1200913648289,
200^16 + 1 = 6553600000000000000000000000000000001 =
162123499503471553 * 40423504427621041217.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [2..300]|IsSemiprime(n^16+1)] // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[300],PrimeOmega[#^16+1]==2&] (* Harvey P. Dale, Aug 21 2011 *)
    Select[Range[1000], 2 == Total[Transpose[FactorInteger[#^16 + 1]][[2]]] &] (* Robert Price, Mar 11 2015 *)

Formula

a(n)^16 + 1 is semiprime (A001358).

Extensions

More terms from Vincenzo Librandi, Dec 21 2010
Corrected (adding 202, 208, and 220) by Harvey P. Dale, Aug 21 2011

A105078 Positive integers n such that n^10 + 1 is semiprime.

Original entry on oeis.org

4, 16, 26, 54, 110, 120, 126, 260, 314, 420, 444, 470, 570, 646, 714, 890, 946, 1010, 1294, 1306, 1394, 1640, 1674, 1794, 1920, 1964, 2116, 2174, 2360, 2430, 2624, 2666, 2884, 2924, 3094, 3106, 3174, 3220, 3504, 3686, 3826, 3884, 3924, 4046, 4540, 4700
Offset: 1

Views

Author

Jonathan Vos Post, Apr 06 2005

Keywords

Comments

We have the polynomial factorization: n^10+1 = (n^2+1) * (n^8 - n^6 + n^4 - n^2 + 1) Hence after the initial n=1 prime the binomial can only be semiprime if n^2 + 1 is prime and n^8 - n^6 + n^4 - n^2 + 1 is prime.

Examples

			4^10+1 = 1048577 = 17 * 61681,
16^10+1 = 1099511627777 = 257 * 4278255361,
1010^10+1 = 1104622125411204510010000000001 = 1020101 * 1082855644108970101989901.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[5000], PrimeQ[ #^2 + 1] && PrimeQ[(#^10 + 1)/(#^2 + 1)] &] (* Robert G. Wilson v, Apr 08 2005 *)
    Select[Range[4700], PrimeOmega[#^10+1]==2&] (* Harvey P. Dale, Jan 13 2013 *)

Extensions

More terms from Robert G. Wilson v, Apr 08 2005

A105142 Positive integers n such that n^12 + 1 is semiprime.

Original entry on oeis.org

2, 6, 34, 46, 142, 174, 204, 238, 312, 466, 550, 616, 690, 730, 1136, 1280, 1302, 1330, 1486, 1586, 1610, 1638, 1644, 1652, 1688, 1706, 1772, 1934, 1952, 1972, 2040, 2102, 2108, 2142, 2192, 2238, 2250, 2376, 2400, 2554, 2612, 2646, 3006, 3094, 3550, 3642
Offset: 1

Views

Author

Jonathan Vos Post, Apr 09 2005

Keywords

Comments

Since n^12 + 1 = (n^4+1) * (n^8 - n^4 + 1), n^12 + 1 can be semiprime only if both n^4 + 1 and n^8 - n^4 + 1 are prime.

Examples

			2^12+1 = 4097 = 17 * 241,
6^12+1 = 2176782337 = 1297 * 1678321,
34^12+1 = 2386420683693101057 = 1336337 * 1785792568561,
1136^12+1 = 4618915067251126036363854530631172097 = 1665379926017 * 2773490297975392253706241.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range@3691, PrimeQ[ #^4 + 1] && PrimeQ[(#^12 + 1)/(#^4 + 1)] &] (* Robert G. Wilson v *)
    Select[Range[4000],PrimeOmega[#^12+1]==2&] (* Harvey P. Dale, Jan 24 2013 *)

Extensions

a(16)-a(46) from Robert G. Wilson v, Feb 10 2006

A105237 Positive integers n such that n^13 + 1 is semiprime.

Original entry on oeis.org

2, 22, 108, 126, 180, 256, 336, 490, 630, 652, 660, 682, 708, 760, 828, 862, 882, 1030, 1038, 1128, 1162, 1216, 1318, 1450, 1612, 1930, 1950, 2010, 2236, 2268, 2380, 2436, 2658, 2752, 2800, 2962, 2998, 3036, 3048, 3318, 3672, 3922, 4152, 4396, 4506, 4816
Offset: 1

Views

Author

Jonathan Vos Post, Apr 12 2005

Keywords

Comments

We have the polynomial factorization: n^13+1 = (n+1) * (n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1) Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n+1 is prime and n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 is prime.

Examples

			2^13+1 = 8193 = 3 * 2731,
22^13+1 = 282810057883082753 = 23 * 12296089473177511,
1030^13+1 = 1468533713451564313811276230000000000001 = 1031 * 1424377995588326201562828545101842871.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1600]|IsSemiprime(n^13+1)] // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[0, 300000], PrimeQ[# + 1] && PrimeQ[(#^13 + 1)/(# + 1)] &] (* Robert Price, Mar 11 2015 *)

Extensions

a(19)-a(24) from Vincenzo Librandi, Dec 21 2010

A104657 Positive integers n such that n^19 + 1 is semiprime (A001358).

Original entry on oeis.org

2, 10, 28, 106, 190, 292, 556, 756, 858, 906, 1012, 1030, 1032, 1060, 1372, 1450, 1488, 1720, 1722, 1758, 1782, 1822, 1972, 2356, 2436, 2446, 2620, 2748, 2788, 2998, 3186, 3300, 3318, 3360, 3466, 3510, 3822, 3852, 4138, 4326, 4506, 4908, 5236, 5518, 5782
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

We have the polynomial factorization: n^19 + 1 = (n + 1) * (n^18 - n^17 + n^16 - n^15 + n^14 - n^13 + n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1). Hence after the initial n=1 prime the binomial can never be prime. It can be semiprime iff n+1 is prime and (n^18 - n^17 + n^16 - n^15 + n^14 - n^13 + n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1) is prime.

Examples

			2^19 + 1 = 524289 = 3 * 174763,
10^19 + 1 = 10000000000000000001 = 11 * 909090909090909091,
1012^19 + 1 = 125438178100868833265294241234853844232270960601988910249 = 1013 * 1238284087866424810121364671617510801898035149081825373.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1100]|IsSemiprime(n^19+1)]; // Vincenzo Librandi, Mar 10 2015
  • Mathematica
    Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^19 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *)
    Select[Range[5800],PrimeOmega[#^19+1]==2&] (* Harvey P. Dale, Feb 15 2019 *)

Formula

a(n)^19 + 1 is semiprime (A001358).

Extensions

a(12)-a(45) from Robert Price, Mar 09 2015

A105282 Positive integers n such that n^20 + 1 is semiprime (A001358).

Original entry on oeis.org

2, 4, 46, 154, 266, 472, 748, 1434, 1738, 2058, 2204, 2222, 2428, 2478, 2510, 2866, 3132, 3288, 3576, 3688, 3756, 4142, 4506, 4940, 5164, 6252, 6330, 6786, 7180, 7300, 7338, 7416, 7628, 7806, 9270, 9312, 10044, 10722, 10860, 12126, 12422, 12668, 12998, 13350
Offset: 1

Views

Author

Jonathan Vos Post, Apr 25 2005

Keywords

Comments

We have the polynomial factorization: n^20 + 1 = (n^4 + 1) * (n^16 - n^12 + n^8 - n^4 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^4+1 is prime and (n^16 - n^12 + n^8 - n^4 + 1) is prime.

Examples

			2^20 + 1 = 1048577 = 17 * 61681,
4^20 + 1 = 1099511627777 = 257 * 4278255361,
46^20 + 1 = 1799519816997495209117766334283777 = 4477457 * 401906666439788301510827761,
1434^20 + 1 =
1352019721694375552250489804528860551814233886722212960509362177 =
4228599998737 * 319732233386510278346888399489424537759394853595121.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1000] | IsSemiprime(n^20+1)] // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[1000000], PrimeQ[#^4 + 1] && PrimeQ[(#^20 + 1)/(#^4 + 1)] &] (* Robert Price, Mar 09 2015 *)

Formula

a(n)^20 + 1 is semiprime (A001358).

Extensions

a(9)-a(44) from Robert Price, Mar 09 2015
Showing 1-10 of 12 results. Next