cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A104621 Heptanacci-Lucas numbers.

Original entry on oeis.org

7, 1, 3, 7, 15, 31, 63, 127, 247, 493, 983, 1959, 3903, 7775, 15487, 30847, 61447, 122401, 243819, 485679, 967455, 1927135, 3838783, 7646719, 15231991, 30341581, 60439343, 120393007, 239818559, 477709983, 951581183, 1895515647, 3775799303, 7521257025
Offset: 0

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

This 7th-order linear recurrence is a generalization of the Lucas sequence A000032. Mario Catalani would refer to this is a generalized heptanacci sequence, had he not stopped his series of sequences after A001644 "generalized tribonacci", A073817 "generalized tetranacci", A074048 "generalized pentanacci", A074584 "generalized hexanacci." T. D. Noe and I have noted that each of these has many more primes than the corresponding tribonacci A000073 (see A104576), tetranacci A000288 (see A104577), pentanacci, hexanacci and heptanacci (see A104414). For primes in Heptanacci-Lucas numbers, see A104622. For semiprimes in Heptanacci-Lucas numbers, see A104623.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (-7+6*x+ 5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7) )); // G. C. Greubel, Apr 22 2019
    
  • Maple
    A104621 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[7, 1, 3, 7, 15, 31, 63])
        else
            add(procname(n-i),i=1..7) ;
        end if;
    end proc: # R. J. Mathar, Mar 26 2015
  • Mathematica
    a[0]=7; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[5]=31; a[6]=63; a[n_]:= a[n]= a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]+a[n-7]; Table[a[n], {n,0,40}] (* Robert G. Wilson v, Mar 17 2005 *)
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {7, 1, 3, 7, 15, 31, 63}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    my(x='x+O('x^40)); Vec((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7)) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6-x^7), 40) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6 +x^7)).series(x, 41).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7); a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: (7 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6)/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
a(n) = 7*A066178(n) - 6*A066178(n-1) - 5*A066178(n-2) - ... - 2*A066178(n-5) - A066178(n-6) if n >= 6. (End)

A104622 Indices of prime values of heptanacci-Lucas numbers A104621.

Original entry on oeis.org

0, 2, 3, 5, 7, 10, 17, 24, 25, 26, 28, 38, 40, 49, 62, 79, 89, 114, 140, 145, 182, 248, 353, 437, 654, 702, 784, 921, 931, 986, 1206, 2136, 2137, 3351, 5411, 13264, 13757, 16348, 27087, 27160
Offset: 1

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

The 7th-order linear recurrence A104622 (heptanacci-Lucas numbers) is a generalization of the Lucas sequence A000032. T. D. Noe and I have noted that the heptanacci-Lucas numbers have many more primes than the corresponding heptanacci (see A104414) which he found has only the first 3 primes that I identified through the first 5000 values, whereas these heptanacci-Lucas numbers have 17 primes among the first 100 values. For semiprimes in heptanacci-Lucas numbers, see A104623.

Examples

			A104621(0) = 7,
A104621(2) = 3,
A104621(3) = 7,
A104621(5) = 31,
A104621(7) = 127,
A104621(10) = 983,
A104621(17) = 122401,
A104621(24) = 15231991.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 7; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[5] = 31; a[6] = 63; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + a[n - 5] + a[n - 6] + a[n - 7]; Do[ If[ PrimeQ[ a[n]], Print[n]], {n, 5000}] (* Robert G. Wilson v, Mar 17 2005 *)
    Flatten[Position[LinearRecurrence[{1,1,1,1,1,1,1},{7,1,3,7,15,31,63},28000],?PrimeQ]]-1 (* _Harvey P. Dale, Jan 02 2016 *)

Formula

Prime values of the heptanacci-Lucas numbers, which are defined by: a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63, for n > 6: a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7).

Extensions

More terms from T. D. Noe and Robert G. Wilson v, Mar 17 2005

A104415 Number of prime factors, with multiplicity, of the nonzero octanacci numbers A079262.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 6, 7, 3, 1, 4, 5, 6, 6, 11, 7, 9, 1, 4, 3, 6, 8, 7, 8, 11, 10, 2, 2, 8, 4, 9, 7, 11, 11, 12, 3, 2, 4, 5, 6, 9, 10, 11, 12, 2, 4, 10, 5, 10, 9, 17, 12, 10, 4, 4, 4, 9, 11, 8, 8, 12, 12, 4, 4, 10, 11, 9, 11, 15, 13, 9, 5, 6, 5, 9, 6, 9, 9
Offset: 1

Views

Author

Jonathan Vos Post, Mar 06 2005

Keywords

Examples

			a(0)=a(1)=0 because the first two nonzero octanacci numbers are both 1, which has zero prime divisors.
a(2)=1 because the 3rd nonzero octanacci number is 2, a prime, with only one prime divisor.
a(3)=2 because the 4th nonzero octanacci number is 4 = 2^2 which has (with multiplicity) 2 prime divisors (which happen to be equal).
a(4)=3 because the 5th nonzero octanacci number is 8 = 2^3.
a(10)=3 because A079262(10) = 255 = 3 * 5 * 17 which has 3 prime factors.
		

Crossrefs

Formula

a(n) = A001222(A079262(n+6)).

Extensions

Offset corrected and more terms added by Amiram Eldar, Sep 08 2019

A104623 Indices of semiprime (A001358) values of Heptanacci-Lucas numbers A104621.

Original entry on oeis.org

4, 8, 9, 11, 12, 14, 15, 16, 22, 23, 32, 34, 37, 41, 42, 50, 52, 57, 58, 66, 69, 76, 77, 81, 90, 120, 139
Offset: 0

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

The 7th-order linear recurrence A104622 (heptanacci-Lucas numbers) is a generalization of the Lucas sequence A000032. T. D. Noe and I have noted that the heptanacci-Lucas numbers have many more primes than the corresponding heptanacci (see A104414) which he found has only the first 3 primes that I identified through the first 5000 values, whereas these heptanacci-Lucas numbers have 17 primes among the first 100 values. For primes in Heptanacci-Lucas numbers, see A104622.

Examples

			A104621(4) = 15 = 3 * 5,
A104621(8) = 247 = 13 * 19,
A104621(9) = 493 = 17 * 29,
A104621(11) = 1959 = 3 * 653,
A104621(12) = 3903 = 3 * 1301,
A104621(14) = 15487 = 17 * 911,
		

Crossrefs

Cf. A001358.

A104418 Number of prime factors, with multiplicity, of the nonzero 9-acci numbers.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 6, 3, 5, 7, 9, 9, 11, 9, 3, 2, 2, 8, 7, 7, 7, 10, 11, 10, 3, 2, 7, 8, 11, 7, 12, 13, 15, 11, 3, 2, 6, 7, 7, 10, 9, 12, 12, 13, 5, 2, 5, 8, 8, 7, 13, 12, 10, 12, 6, 3, 3, 6, 12, 11, 12, 10, 12, 12, 2, 6, 12, 8, 11, 9, 14, 13, 13, 13, 7, 2
Offset: 1

Views

Author

Jonathan Vos Post, Mar 06 2005

Keywords

Comments

Prime 9-acci numbers: b(3) = 2, b(12) = 1021, ... Semiprime 9-acci numbers: b(4) = 4 = 2^2, b(11) = 511 = 7 * 73, b(22) = 1035269 = 47 * 22027, b(23) = 2068498 = 2 * 1034249, b(32) = 1049716729 = 1051 * 998779 b(42) = 1064366053385 = 5 * 212873210677, b(52) = 1079219816432629 = 28669 * 37644138841, b(71) = 555323195719171835391 = 3 * 185107731906390611797, b(82) = 1125036467745713090813969 = 37 * 30406391020154407859837.

Examples

			a(1)=a(2)=0 because the first two nonzero 9-acci numbers are both 1, which has zero prime divisors.
a(3)=1 because the 3rd nonzero 9-acci number is 2, a prime, with only one prime divisor.
a(4)=2 because the 4th nonzero 9-acci number is 4 = 2^2 which has (with multiplicity) 2 prime divisors (which happen to be equal).
a(5)=3 because the 5th nonzero 9-acci number is 8 = 2^3.
a(13) = 6 because b(13) = 2040 = 2^3 * 3 * 5 * 17 so has 6 prime factors (2 with multiplicity 3 and 3, 5 and 17 once each).
		

Crossrefs

Formula

a(n) = A001222(A104144(n+7)).
Showing 1-5 of 5 results.