A104478 a(n) = binomial(n+8,8)*binomial(n+12,8).
495, 11583, 135135, 1061775, 6370650, 31286970, 131405274, 486370170, 1621233900, 4946841900, 13992495660, 37058912748, 92647281870, 220089696750, 499568676750, 1088533853550, 2285921092455, 4642276728375, 9143878404375, 17513561154375, 32691980821500, 59592810754620
Offset: 0
Examples
a(0): C(0+8,8)*C(0+12,8) = C(8,8)*C(12,8) = 1*495 = 495. a(7): C(7+8,8)*C(7+12,8) = C(15,8)*C(19,8) = 6435*75582 = 486370170.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
Programs
-
Magma
[Binomial(n+8,8)*Binomial(n+12,8): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
-
Mathematica
f[n_] := Binomial[n + 8, 8] * Binomial[n + 12, 8]; Table[ f[n], {n, 0, 18}] (* Robert G. Wilson v, Apr 19 2005 *)
-
PARI
vector(30, n, n--; binomial(n+8,8)*binomial(n+12,8)) \\ Michel Marcus, Jul 31 2015
-
SageMath
def A104478(n): return binomial(n+8,8)*binomial(n+12,8) print([A104478(n) for n in range(31)]) # G. C. Greubel, Mar 04 2025
Formula
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 11648*Pi^2/3 - 65726161036/1715175.
Sum_{n>=0} (-1)^n/a(n) = 262144*log(2)/99 - 629604992/343035. (End)
G.f.: 99*(5 + 32*x + 56*x^2 + 32*x^3 + 5*x^4)/(1-x)^17. - G. C. Greubel, Mar 04 2025
Extensions
Corrected and extended by Robert G. Wilson v, Apr 19 2005
a(6) corrected by Georg Fischer, May 08 2021
Comments