cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104547 Number of Schroeder paths of length 2n having no UHD, UHHD, UHHHD, ..., where U=(1,1), D=(1,-1), H=(2,0).

Original entry on oeis.org

1, 2, 5, 16, 60, 245, 1051, 4660, 21174, 98072, 461330, 2197997, 10585173, 51443379, 251982793, 1242734592, 6165798680, 30754144182, 154123971932, 775669589436, 3918703613376, 19866054609754, 101029857327802, 515275408644773
Offset: 0

Views

Author

Emeric Deutsch, Mar 14 2005

Keywords

Comments

A Schroeder path is a lattice path starting from (0,0), ending at a point on the x-axis, consisting only of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis. Schroeder paths are counted by the large Schroeder numbers (A006318).
Equals binomial transform of A119370. - Paul D. Hanna, May 17 2006

Examples

			a(2)=5 because we have HH, HUD, UDH, UDUD and UUDD (UHD does not qualify).
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-2*x+2*x^2 - Sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) )); // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2 -Sqrt[1-8*x+16*x^2-12*x^3+4*x^4] )/(2*x*(1-x)), {x,0,40}], x] (* G. C. Greubel, Jan 02 2023 *)
  • PARI
    {a(n)=polcoeff(2*(1-x)/(1-2*x+2*x^2 + sqrt(1-8*x+16*x^2-12*x^3+4*x^4+x*O(x^n))),n)} \\ Paul D. Hanna, May 17 2006
    
  • SageMath
    def A104547_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)) ).list()
    A104547_list(40) # G. C. Greubel, Jan 02 2023

Formula

a(n) = A104546(n, 0).
G.f.: G = G(z) satisfies G = 1 + z*G + z*G(G - z/(1-z)).
G.f.: (1-2*x+2*x^2 - sqrt(1-8*x+16*x^2-12*x^3+4*x^4))/(2*x*(1-x)). - Paul D. Hanna, May 17 2006
D-finite with recurrence (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 2*(14*n-37)*a(n-3) - 2*(8*n-31)*a(n-4) + 4*(n-5)*a(n-5). - R. J. Mathar, Jul 26 2022