cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104558 Triangle, read by rows, equal to the matrix inverse of A104557 and related to Laguerre polynomials.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 0, 2, -4, 1, 0, 0, 6, -6, 1, 0, 0, -6, 18, -9, 1, 0, 0, 0, -24, 36, -12, 1, 0, 0, 0, 24, -96, 72, -16, 1, 0, 0, 0, 0, 120, -240, 120, -20, 1, 0, 0, 0, 0, -120, 600, -600, 200, -25, 1, 0, 0, 0, 0, 0, -720, 1800, -1200, 300, -30, 1, 0, 0, 0, 0, 0, 720, -4320, 5400, -2400, 450, -36, 1, 0, 0, 0, 0, 0, 0, 5040, -15120, 12600, -4200, 630, -42, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2005

Keywords

Comments

Even-indexed rows are found in A066667 (generalized Laguerre polynomials). Odd-indexed rows are found in A021009 (Laguerre polynomials L_n(x)). Row sums equal A056920 (offset 1). Absolute row sums equal A056953 (offset 1).

Examples

			Rows begin:
  1;
  -1,1;
  0,-2,1;
  0,2,-4,1;
  0,0,6,-6,1;
  0,0,-6,18,-9,1;
  0,0,0,-24,36,-12,1;
  0,0,0,24,-96,72,-16,1;
  0,0,0,0,120,-240,120,-20,1;
  0,0,0,0,-120,600,-600,200,-25,1;
  ...
Unsigned columns read downwards equals rows of matrix inverse A104557 read backwards:
  1;
  1,1;
  2,2,1;
  6,6,4,1;
  24,24,18,6,1;
  120,120,96,36,9,1;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*Factorial(n-k)*Binomial(1+ Floor(n/2), k +1 -Floor((n+1)/2))*Binomial(Floor((n+1)/2), k - Floor(n/2)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 14 2018
  • Mathematica
    T[n_, k_] := (-1)^(n - k)*(n - k)!*Binomial[1 + Floor[n/2], k + 1 - Floor[(n + 1)/2]]*Binomial[Floor[(n+1)/2], k -Floor[n/2]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}]//Flatten (* G. C. Greubel, May 14 2018 *)
  • PARI
    {T(n,k)=(-1)^(n-k)*(n-k)!*binomial(1+n\2,k+1-(n+1)\2)* binomial( (n+1)\2,k-n\2)};
    

Formula

T(n, k) = (-1)^(n-k)*(n-k)!*C(1+[n/2], k+1-[(n+1)/2])*C([(n+1)/2], k-[n/2]).