cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007440 Reversion of g.f. for Fibonacci numbers 1, 1, 2, 3, 5, ....

Original entry on oeis.org

1, -1, 0, 2, -3, -1, 11, -15, -13, 77, -86, -144, 595, -495, -1520, 4810, -2485, -15675, 39560, -6290, -159105, 324805, 87075, -1592843, 2616757, 2136539, -15726114, 20247800, 32296693, -152909577, 145139491, 417959049, -1460704685, 885536173, 4997618808, -13658704994
Offset: 1

Views

Author

N. J. A. Sloane, May 24 1994

Keywords

Comments

Binomial transform of A104565 (reversion of Pell numbers). - Paul Barry, Mar 15 2005
From Paul Barry, Nov 03 2008: (Start)
Hankel transform of a(n) (starting 0,1,-1,..) is F(n)*(-1)^C(n+1,2).
Hankel transform of a(n+1) is (-1)^C(n+1,2).
Hankel transform of a(n+2) is F(n+2)*(-1)^C(n+2,2).
(End)
The sequence 1,1,-1,0,2,... given by 0^n + Sum_{k=0..floor((n-1)/2)} binomial(n-1,2k)*A000108(k)*(-1)^(n-k-1) has Hankel transform F(n+2)*(-1)^binomial(n+1,2). - Paul Barry, Jan 13 2009
Apart from signs, essentially the same as A343773. For odd terms, a(n) = A343773(n-1), while a(n) = -A343773(n-1) if n is even. - Gennady Eremin, May 19 2021

Examples

			G.f. = x - x^2 + 2*x^4 - 3*x^5 - x^6 + 11*x^7 - 15*x^8 - 13*x^9 + 77*x^10 - 86*x^11 - 144*x^12 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007440 := n -> (-1)^(n+1)*hypergeom([1 - n/2, 1/2 -n/2], [2], -4):
    seq(simplify(A007440(n)), n=1..35); # Peter Luschny, Mar 19 2018, adapted to offset Jul 21 2023
    # Using function CompInv from A357588.
    CompInv(25, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
  • Mathematica
    a[1] = 1; a[2] = -1; a[n_] := a[n] = (-5*(n-2)*a[n-2] + (1-2*n)*a[n-1])/(n+1); Array[a, 36] (* Jean-François Alcover, Apr 18 2014 *)
    Rest[CoefficientList[Series[(-1-x+Sqrt[1+2*x+5*x^2])/(2*x),{x,0,20}],x]] (* Vaclav Kotesovec, Apr 25 2015 *)
  • PARI
    a(n)=polcoeff((-1-x+sqrt(1+2*x+5*x^2+x^2*O(x^n)))/(2*x),n)
    
  • PARI
    Vec(serreverse(x/(1-x-x^2)+O(x^66))) /* Joerg Arndt, Aug 19 2012 */
    
  • Python
    A007440 = [0, 1, -1]
    for n in range(3, 801):
        A007440.append( (-(2*n-1)*A007440[-1]
          - 5*(n-2)*A007440[-2])//(n+1) )
    for n in range(1, 801):
        print(n, A007440[n])  # Gennady Eremin, May 10 2021
  • Sage
    def A007440_list(len):
        T = [0]*(len+1); T[1] = 1; R = [1]
        for n in (1..len-1):
            a,b,c = 1,0,0
            for k in range(n,-1,-1):
                r = a - b - c
                if k < n : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u; R.append(u)
        return R
    A007440_list(36) # Peter Luschny, Nov 01 2012
    

Formula

D-finite with recurrence (n+3)*a(n+2) = -(2*n + 3)*a(n+1) - 5*n*a(n), a(1) = 1, a(2) = -1.
G.f.: A(x) = (-1 - x + sqrt(1 + 2*x + 5*x^2))/(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*C(k)*(-1)^(n-k), where C(n) is A000108(n). - Paul Barry, May 16 2005
a(n) = (5^((n+1)/2)*LegendreP(n-1,-1/sqrt(5)) + 5^(n/2)*LegendreP(n,-1/sqrt(5)))/(2*n+2). - Mark van Hoeij, Jul 02 2010
a(n) = 2^(-n-1)*Sum_{k=floor((n-1)/2)..n} binomial(k+1,n-k)*5^(n-k)*(-1)^k*C(k), n > 0, where C(k) is A000108. - Vladimir Kruchinin, Sep 21 2010
G.f.: (G(0)-x-1)/(x^2) = 1/G(0) where G(k) = 1 + x + x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2011
From Peter Bala, Jun 23 2015: (Start)
Lucas(n) = [x^n] (x/A(x))^n for n >= 1.
-1/A(-x) = 1/x - 1 + x + x^2 - 2*x^4 - 3*x^5 + x^6 + 11*x^7 + 15*x^8 - 13*x^9 + ... is the Laurent series generating function for A214649. (End)
a(n) = (-1)^n*hypergeom([1/2 - n/2, -n/2], [2], -4). - Peter Luschny, Mar 19 2018
From Gennady Eremin, May 09 2021: (Start)
a(n) = -(-1)^n * A343773(n-1), n > 0.
G.f.: A(x) = x*B(-x), where B(x) is the g.f. of A343773.
Limit_{n->infinity} a(n)/A001006(n) = 0. (End)
G.f. A(x) satisfies A(x) + 1 + x^-1 = 1/A(x). - Gennady Eremin, May 29 2021

Extensions

Extended and signs added by Olivier Gérard
Second formula adapted to offset by Vaclav Kotesovec, Apr 25 2015

A307374 G.f. A(x) satisfies: A(x) = 1 + x - x^2*A(x)^2.

Original entry on oeis.org

1, 1, -1, -2, 1, 6, 1, -18, -16, 50, 93, -112, -428, 98, 1713, 936, -6004, -8382, 17512, 47608, -33826, -221936, -36335, 892164, 862666, -3051022, -6076072, 8026380, 32247334, -8222288, -144487267, -81500652, 555489738, 801700858, -1751543424, -4898513044
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2019

Keywords

Examples

			G.f.: A(x) = 1 + x - x^2 - 2*x^3 + x^4 + 6*x^5 + x^6 - 18*x^7 - 16*x^8 + 50*x^9 + 93*x^10 - 112*x^11 - 428*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 35; A[] = 0; Do[A[x] = 1 + x - x^2 A[x]^2 + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = -Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 35}]

Formula

a(0) = a(1) = 1; a(n+2) = -Sum_{k=0..n} a(k)*a(n-k).
Showing 1-2 of 2 results.