A104621 Heptanacci-Lucas numbers.
7, 1, 3, 7, 15, 31, 63, 127, 247, 493, 983, 1959, 3903, 7775, 15487, 30847, 61447, 122401, 243819, 485679, 967455, 1927135, 3838783, 7646719, 15231991, 30341581, 60439343, 120393007, 239818559, 477709983, 951581183, 1895515647, 3775799303, 7521257025
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..3300 (terms 0..200 from T. D. Noe)
- Martin Burtscher, Igor Szczyrba, RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.
- C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
- Spiros D. Dafnis, Andreas N. Philippou, Ioannis E. Livieris, An Alternating Sum of Fibonacci and Lucas Numbers of Order k, Mathematics (2020) Vol. 9, 1487.
- Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (-7+6*x+ 5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7) )); // G. C. Greubel, Apr 22 2019 -
Maple
A104621 := proc(n) option remember; if n <=6 then op(n+1,[7, 1, 3, 7, 15, 31, 63]) else add(procname(n-i),i=1..7) ; end if; end proc: # R. J. Mathar, Mar 26 2015
-
Mathematica
a[0]=7; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[5]=31; a[6]=63; a[n_]:= a[n]= a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]+a[n-7]; Table[a[n], {n,0,40}] (* Robert G. Wilson v, Mar 17 2005 *) LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {7, 1, 3, 7, 15, 31, 63}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
-
PARI
my(x='x+O('x^40)); Vec((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7)) \\ G. C. Greubel, Dec 18 2017
-
PARI
polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6-x^7), 40) \\ G. C. Greubel, Apr 22 2019
-
Sage
((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6 +x^7)).series(x, 41).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
Formula
a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7); a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: (7 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6)/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
Comments