cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104625 Expansion of 1/(sqrt(1-4*x) - x^2).

Original entry on oeis.org

1, 2, 7, 24, 87, 322, 1211, 4604, 17645, 68042, 263655, 1025632, 4002601, 15662422, 61427543, 241386924, 950160607, 3745589510, 14784496003, 58424093536, 231112008371, 915065382154, 3626113490579, 14379912928572, 57064644495359
Offset: 0

Views

Author

Paul Barry, Mar 17 2005

Keywords

Comments

Diagonal sums of convolution triangle of central binomial coefficients A054335.
Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (2,2). - Alois P. Heinz, Sep 14 2016

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/(sqrt(1-4*x) - x^2))); // G. C. Greubel, Aug 12 2018
  • Mathematica
    CoefficientList[Series[1/(Sqrt[1-4*x] -x^2), {x, 0, 50}], x] (* G. C. Greubel, Aug 12 2018 *)
  • PARI
    x='x+O('x^50); Vec(1/(sqrt(1-4*x) - x^2)) \\ G. C. Greubel, Aug 12 2018
    

Formula

Conjecture: n*a(n) + (n-3)*a(n-1) + 2*(-28*n+51)*a(n-2) + 72*(2*n-5)*a(n-3) - n*a(n-4) + (-5*n+3)*a(n-5) + 18*(2*n-5)*a(n-6) = 0. - R. J. Mathar, Feb 20 2015
a(n) = Sum_{k=0..floor(n+2)/2} 4^(n+2-2*k) * binomial(n+1-3*k/2,n+2-2*k). - Seiichi Manyama, Feb 06 2024