cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104671 a(n) = binomial(n+3,n)*binomial(n+8,n).

Original entry on oeis.org

1, 36, 450, 3300, 17325, 72072, 252252, 772200, 2123550, 5348200, 12514788, 27511848, 57316350, 113954400, 217443600, 400096224, 712671399, 1232995500, 2077825750, 3418915500, 5504453955, 8687301480, 13461727500, 20510685000, 30766027500, 45484495056
Offset: 0

Views

Author

Zerinvary Lajos, Apr 22 2005

Keywords

Examples

			If n=0 then C(0+3,3)*C(0+8,0+0) = C(3,3)*C(8,0) = 1*1 = 1.
If n=6 then C(6+3,3)*C(6+8,6+0) = C(9,3)*C(14,6) = 84*3003 = 252252.
		

Crossrefs

Cf. A062190.

Programs

  • Magma
    A104671:= func< n | Binomial(n+3,n)*Binomial(n+8,n) >;
    [A104671(n): n in [0..30]]; // G. C. Greubel, Mar 01 2025
    
  • Mathematica
    Table[Binomial[n+3,3]Binomial[n+8,n],{n,0,30}] (* or *)
    LinearRecurrence[ {12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,36,450,3300,17325,72072,252252,772200,2123550,5348200,12514788,27511848},30] (* Harvey P. Dale, Oct 05 2017 *)
  • SageMath
    def A104671(n): return binomial(n+3,n)*binomial(n+8,n)
    print([A104671(n) for n in range(31)]) # G. C. Greubel, Mar 01 2025

Formula

G.f.: (1+24*x+84*x^2+56*x^3)/(1-x)^12. - Bruno Berselli, Jun 06 2012
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 144*Pi^2 - 1739736/1225.
Sum_{n>=0} (-1)^n/a(n) = 16*Pi^2 - 13312*log(2)/35 - 515202/1225. (End)

Extensions

a(12) corrected by Colin Barker, Jun 06 2012
More terms and a(7), a(15) corrected by Bruno Berselli, Jun 06 2012