cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104683 Interlaces "2*n^2 - 1 is a square" with NSW numbers.

Original entry on oeis.org

1, 1, 5, 7, 29, 41, 169, 239, 985, 1393, 5741, 8119, 33461, 47321, 195025, 275807, 1136689, 1607521, 6625109, 9369319, 38613965, 54608393, 225058681, 318281039, 1311738121, 1855077841, 7645370045, 10812186007, 44560482149, 63018038201
Offset: 0

Views

Author

Creighton Dement, Apr 22 2005

Keywords

Comments

See A100828 for a similar case.
If the pair (1,1)=(x,y), iteration of x'=3*x+4*y and y'=2*x+3*y gives a new pair of integer satisfying Pell's equation x^2-2*y^2=-1. Example: 7^2-2*5^2=-1; 41^2-2*29^2=-1. [Vincenzo Librandi, Nov 13 2010]
Floretion Algebra Multiplication Program, FAMP Code: 1jesleftcycseq:['k + i' + j']

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 7}, 30] (* Bruno Berselli, Apr 04 2012 *)
  • Maxima
    makelist(expand(((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2))), n, 0, 29); /* Bruno Berselli, Apr 04 2012 */

Formula

G.f.: (1+x-x^2+x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
a(n) = ((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2)). [Bruno Berselli, Apr 04 2012]