A104683 Interlaces "2*n^2 - 1 is a square" with NSW numbers.
1, 1, 5, 7, 29, 41, 169, 239, 985, 1393, 5741, 8119, 33461, 47321, 195025, 275807, 1136689, 1607521, 6625109, 9369319, 38613965, 54608393, 225058681, 318281039, 1311738121, 1855077841, 7645370045, 10812186007, 44560482149, 63018038201
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- T. W. Forget and T. A. Larkin, Pythagorean triads of the form X, X+1, Z described by recurrence sequences, Fib. Quart., 6 (No. 3, 1968), 94-104.
- Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arith., 38 (1980/1981) 129-140. MR82b:20022.
- The Prime Glossary, NSW number.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 7}, 30] (* Bruno Berselli, Apr 04 2012 *)
-
Maxima
makelist(expand(((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2))), n, 0, 29); /* Bruno Berselli, Apr 04 2012 */
Formula
G.f.: (1+x-x^2+x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
a(n) = ((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2)). [Bruno Berselli, Apr 04 2012]
Comments