cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104720 Expansion of 1/((1-x)(1-x^2)(1-10x)).

Original entry on oeis.org

1, 11, 112, 1122, 11223, 112233, 1122334, 11223344, 112233445, 1122334455, 11223344556, 112233445566, 1122334455667, 11223344556677, 112233445566778, 1122334455667788, 11223344556677889, 112233445566778899, 1122334455667789000, 11223344556677890010, 112233445566778900111, 1122334455667789001121
Offset: 0

Views

Author

Paul Barry, Mar 20 2005

Keywords

Comments

Partial sums of A056830(n+1).

Examples

			From _Seiichi Manyama_, Sep 29 2018: (Start)
   1                  * 8 + 0  = 8;
   11                 * 8 + 1  = 89;
   112                * 8 + 1  = 897;
   1122               * 8 + 2  = 8978;
   11223              * 8 + 2  = 89786;
   112233             * 8 + 3  = 897867;
   1122334            * 8 + 3  = 8978675;
   11223344           * 8 + 4  = 89786756;
   112233445          * 8 + 4  = 897867564;
   1122334455         * 8 + 5  = 8978675645;
   11223344556        * 8 + 5  = 89786756453;
   112233445566       * 8 + 6  = 897867564534;
   1122334455667      * 8 + 6  = 8978675645342;
   11223344556677     * 8 + 7  = 89786756453423;
   112233445566778    * 8 + 7  = 897767564534231;
   1122334455667788   * 8 + 8  = 8978675645342312;
   11223344556677889  * 8 + 8  = 89786756453423120;
   112233445566778899 * 8 + 9  = 897867564534231201.
   1                  * 9 + 1  = 10;
   11                 * 9 + 2  = 101;
   112                * 9 + 2  = 1010;
   1122               * 9 + 3  = 10101;
   11223              * 9 + 3  = 101010;
   112233             * 9 + 4  = 1010101;
   1122334            * 9 + 4  = 10101010;
   11223344           * 9 + 5  = 101010101;
   112233445          * 9 + 5  = 1010101010;
   1122334455         * 9 + 6  = 10101010101;
   11223344556        * 9 + 6  = 101010101010;
   112233445566       * 9 + 7  = 1010101010101;
   1122334455667      * 9 + 7  = 10101010101010;
   11223344556677     * 9 + 8  = 101010101010101;
   112233445566778    * 9 + 8  = 1010101010101010;
   1122334455667788   * 9 + 9  = 10101010101010101;
   11223344556677889  * 9 + 9  = 101010101010101010;
   112233445566778899 * 9 + 10 = 1010101010101010101. (End)
		

Crossrefs

Programs

  • GAP
    List([0..25],n->1000*10^n/891+(-1)^n/44-(18*n+47)/324); # Muniru A Asiru, Sep 29 2018
  • Maple
    seq(coeff(series(((1-x)*(1-x^2)*(1-10*x))^(-1),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Sep 29 2018
  • Mathematica
    a[n_]:=1000*10^n/891 + (-1)^n/44 - (18*n + 47)/324 ; Array[a,50,0] (* or *)
    a[n_]:=Floor[(2*10^(n + 3) - 99*n)/1782]; Array[a,50,0] (* Stefano Spezia, Sep 01 2018 *)
    LinearRecurrence[{11,-9,-11,10},{1,11,112,1122},30] (* Harvey P. Dale, Jun 20 2021 *)

Formula

a(n) = 1000*10^n/891 + (-1)^n/44 - (18n+47)/324.
a(n) = floor((2*10^(n+3) - 99n)/1782). - Hieronymus Fischer, Dec 05 2006
a(n) = 10*a(n-1) + (2*n + 3 + (-1)^n)/4, a(0)=1, a(1)=11. - Vincenzo Librandi, Mar 22 2011