A104765 Triangle T(n,k) read by rows: row n contains the first n Lucas numbers A000204.
1, 1, 3, 1, 3, 4, 1, 3, 4, 7, 1, 3, 4, 7, 11, 1, 3, 4, 7, 11, 18, 1, 3, 4, 7, 11, 18, 29, 1, 3, 4, 7, 11, 18, 29, 47, 1, 3, 4, 7, 11, 18, 29, 47, 76, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 1, 3, 4, 7, 11
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 3; 1, 3, 4; 1, 3, 4, 7; 1, 3, 4, 7, 11; 1, 3, 4, 7, 11, 18; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
Table[LucasL[k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Dec 21 2017 *) Module[{nn=20,luc},luc=LucasL[Range[nn]];Table[Take[luc,n],{n,nn}]]//Flatten (* Harvey P. Dale, Jul 10 2024 *)
-
PARI
for(n=1,10, for(k=1,n, print1(fibonacci(k+1) + fibonacci(k-1), ", "))) \\ G. C. Greubel, Dec 21 2017
Formula
T(n,k) = A000204(k), 1<=k<=n.
T(n,k) = A104764(n,n-k+1).
a(n) = A000204(m), where m = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012
G.f.: (x*y*(2*x*y+1))/((x-1)*(x^2*y^2+x*y-1)). - Vladimir Kruchinin, Jun 21 2025
Extensions
Edited and extended by R. J. Mathar, Jul 23 2008
Comments