cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098012 Triangle read by rows in which the k-th term in row n (n >= 1, k = 1..n) is Product_{i=0..k-1} prime(n-i).

Original entry on oeis.org

2, 3, 6, 5, 15, 30, 7, 35, 105, 210, 11, 77, 385, 1155, 2310, 13, 143, 1001, 5005, 15015, 30030, 17, 221, 2431, 17017, 85085, 255255, 510510, 19, 323, 4199, 46189, 323323, 1616615, 4849845, 9699690, 23, 437, 7429, 96577, 1062347, 7436429, 37182145, 111546435, 223092870
Offset: 1

Views

Author

Alford Arnold, Sep 09 2004

Keywords

Comments

Also, square array A(m,n) in which row m lists all products of m consecutive primes (read by falling antidiagonals). See also A248164. - M. F. Hasler, May 03 2017

Examples

			2
3 3*2
5 5*3 5*3*2
7 7*5 7*5*3 7*5*3*2
Or, as an infinite square array:
     2     3     5     7  ... : row 1 = A000040,
     6    15    35    77  ... : row 2 = A006094,
    30   105   385  1001  ... : row 3 = A046301,
   210  1155  5005 17017  ... : row 4 = A046302,
   ..., with col.1 = A002110, col.2 = A070826, col.3 = A059865\{1}. - _M. F. Hasler_, May 03 2017
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..200],IsPrime);;
    T:=Flat(List([1..9],n->List([1..n],k->Product([0..k-1],i->P[n-i])))); # Muniru A Asiru, Mar 16 2019
  • Haskell
    a098012 n k = a098012_tabl !! (n-1) !! (k-1)
    a098012_row n = a098012_tabl !! (n-1)
    a098012_tabl = map (scanl1 (*)) a104887_tabl
    -- Reinhard Zumkeller, Oct 02 2014
    
  • Maple
    T:=(n,k)->mul(ithprime(n-i),i=0..k-1): seq(seq(T(n,k),k=1..n),n=1..9); # Muniru A Asiru, Mar 16 2019
  • Mathematica
    Flatten[ Table[ Product[ Prime[i], {i, n, j, -1}], {n, 9}, {j, n, 1, -1}]] (* Robert G. Wilson v, Sep 21 2004 *)
  • PARI
    T098012(n,k)=prod(i=0,k-1,prime(n-i)) \\ "Triangle" variant
    A098012(m,n)=prod(i=0,m-1,prime(n+i)) \\ "Square array" variant. - M. F. Hasler, May 03 2017
    

Formula

n-th row = partial products of row n in A104887. - Reinhard Zumkeller, Oct 02 2014

Extensions

More terms from Robert G. Wilson v, Sep 21 2004

A272172 Triangle read by rows: T(n,k) in which row n lists the first n terms of A000203 in reverse order.

Original entry on oeis.org

1, 3, 1, 4, 3, 1, 7, 4, 3, 1, 6, 7, 4, 3, 1, 12, 6, 7, 4, 3, 1, 8, 12, 6, 7, 4, 3, 1, 15, 8, 12, 6, 7, 4, 3, 1, 13, 15, 8, 12, 6, 7, 4, 3, 1, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 14, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 24, 14, 28
Offset: 1

Views

Author

Omar E. Pol, Apr 21 2016

Keywords

Examples

			Triangle begins:
1;
3,   1;
4,   3,  1;
7,   4,  3,  1;
6,   7,  4,  3,  1;
12,  6,  7,  4,  3,  1;
8,  12,  6,  7,  4,  3,  1;
15,  8, 12,  6,  7,  4,  3,  1;
13, 15,  8, 12,  6,  7,  4,  3,  1;
18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
28, 12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
...
		

Crossrefs

Mirror of A245093.
Column k gives A000203 starting in row k.
Row sums give A024916.

Formula

a(n) = A000203(A004736(n)).
T(n,k) = A000203(n-k+1).

A272171 Triangle read by rows: T(n,k) in which row n lists the first n terms of A000005 in reverse order.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 2, 4, 2, 3, 2, 2, 1, 4, 2, 4, 2, 3, 2, 2, 1, 3, 4, 2, 4, 2, 3, 2, 2, 1, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 2, 6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 4, 2, 6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 21 2016

Keywords

Examples

			Triangle begins:
1;
2, 1;
2, 2, 1;
3, 2, 2, 1;
2, 3, 2, 2, 1;
4, 2, 3, 2, 2, 1;
2, 4, 2, 3, 2, 2, 1;
4, 2, 4, 2, 3, 2, 2, 1;
3, 4, 2, 4, 2, 3, 2, 2, 1;
4, 3, 4, 2, 4, 2, 3, 2, 2, 1;
2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1;
6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1;
...
		

Crossrefs

Column k gives A000005 starting in row k.
Row sums give A006218, n >= 1.

Formula

a(n) = A000005(A004736(n)).
T(n,k) = A000005(n-k+1).
Showing 1-3 of 3 results.