cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A104887 Triangle T(n,k) = (n-k+1)-th prime, read by rows.

Original entry on oeis.org

2, 3, 2, 5, 3, 2, 7, 5, 3, 2, 11, 7, 5, 3, 2, 13, 11, 7, 5, 3, 2, 17, 13, 11, 7, 5, 3, 2, 19, 17, 13, 11, 7, 5, 3, 2, 23, 19, 17, 13, 11, 7, 5, 3, 2, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 37, 31, 29, 23, 19, 17, 13, 11, 7, 5, 3, 2, 41, 37, 31, 29
Offset: 1

Views

Author

Gary W. Adamson, Mar 29 2005

Keywords

Comments

Repeatedly writing the prime sequence backwards.
Sequence B is called a reverse reluctant sequence of sequence A, if B is triangle array read by rows: row number k lists first k elements of the sequence A in reverse order. Sequence A104887 is the reverse reluctant sequence of sequence the prime numbers (A000040). - Boris Putievskiy, Dec 13 2012

Examples

			Triangle begins:
   2;
   3,  2;
   5,  3,  2;
   7,  5,  3,  2;
  11,  7,  5,  3,  2;
  13, 11,  7,  5,  3,  2;
  17, 13, 11,  7,  5,  3,  2;
		

Crossrefs

Reflected triangle of A037126.
Cf. A098012 (partial products per row).

Programs

  • GAP
    P:=Filtered([1..200],IsPrime);;
    T:=Flat(List([1..13],n->List([1..n],k->P[n-k+1]))); # Muniru A Asiru, Mar 16 2019
  • Haskell
    import Data.List (inits)
    a104887 n k = a104887_tabl !! (n-1) !! (k-1)
    a104887_row n = a104887_tabl !! (n-1)
    a104887_tabl = map reverse $ tail $ inits a000040_list
    -- Reinhard Zumkeller, Oct 02 2014
    
  • Maple
    T:=(n,k)->ithprime(n-k+1): seq(seq(T(n,k),k=1..n),n=1..13); # Muniru A Asiru, Mar 16 2019
  • Mathematica
    Module[{nn=15,prms},prms=Prime[Range[nn]];Table[Reverse[Take[prms,n]],{n,nn}]]//Flatten (* Harvey P. Dale, Aug 10 2021 *)

Formula

T(n,k) = A000040(n-k+1); a(n) = A000040(A004736(n)).
a(n) = A000040(m), where m=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012

Extensions

Edited by Ralf Stephan, Apr 05 2009

A060381 a(n) = prime(n)*prime(n+1)*...*prime(2*n-1), where prime(i) is the i-th prime.

Original entry on oeis.org

1, 2, 15, 385, 17017, 1062347, 86822723, 10131543907, 1204461778591, 198229051666003, 35224440615606707, 6295457783127226289, 1331590860773071702483, 310692537866322378582047, 78832548083496383033878901, 21381953681344611984282084241
Offset: 0

Views

Author

Jason Earls, Apr 03 2001

Keywords

Comments

Central terms of triangle A098012. - Reinhard Zumkeller, Oct 02 2014
For n >= 0, a(n+1) is the n-th power of 15 in the monoid defined by A306697. - Peter Munn, Feb 18 2020

Examples

			a(1)=2; a(2) = 3*5 = 15; a(3) = 5*7*11 = 385.
		

Crossrefs

Related to A006516 via A019565.
A003961, A059896, A306697 are used to express relationship between terms of this sequence.

Programs

  • GAP
    P:=Filtered([1..200],IsPrime);;
    a:=List([1..15],n->Product([0..n-1],k->P[n+k])); # Muniru A Asiru, Mar 16 2019
    
  • Haskell
    a060381 n = a098012 (2 * n - 1) n  -- Reinhard Zumkeller, Oct 02 2014
    
  • Maple
    seq(mul(ithprime(n+k),k=0..n-1),n=0..15); # Muniru A Asiru, Mar 16 2019
  • Mathematica
    Table[Times@@Prime[Range[n,2n-1]],{n,20}] (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    a(n) = prod(k=n, 2*n-1, prime(k)); \\ Michel Marcus, Mar 16 2019

Formula

a(n) = A002110(2*n-1)/A002110(n-1). - Michel Marcus, Mar 16 2019
From Peter Munn, Feb 18 2020: (Start)
a(n) = A019565(A006516(n)).
For n >= 1, a(n) = A098012(n,n), reading A098012 as a square array.
For n > 1, a(n) = A306697(a(n-1), 15) = A059896(A003961^2(a(n-1)), A003961(a(n-1))).
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Mar 16 2019

A285639 a(n) = n*A117366(n)/spf(n), where A117366(n) is the smallest prime larger than all prime factors of n, and spf is the smallest prime factor of n (or 1 if n = 1).

Original entry on oeis.org

2, 3, 5, 6, 7, 15, 11, 12, 15, 35, 13, 30, 17, 77, 35, 24, 19, 45, 23, 70, 77, 143, 29, 60, 35, 221, 45, 154, 31, 105, 37, 48, 143, 323, 77, 90, 41, 437, 221, 140, 43, 231, 47, 286, 105, 667, 53, 120, 77, 175, 323, 442, 59, 135, 143, 308, 437, 899, 61, 210, 67, 1147
Offset: 1

Views

Author

M. F. Hasler, Apr 30 2017

Keywords

Comments

The smallest prime factor of n is removed, and a prime factor larger than all others is added. This is somewhat in the spirit of A003961 where each of the prime factors is increased to the next larger prime. Therefore a(n) = A003961(n) when n is a prime or a product of consecutive primes.
Leaves invariant A073485, i.e., for all n in A073485, a(n) is again in A073485. More precisely, a(A098012(m,n)) = A098012(m,n+1). - M. F. Hasler, May 03 2017

Examples

			a(1) = nextprime(1) = 2.
a(2) = 2 / 2 * nextprime(2) = 3.
a(3) = 3 / 3 * nextprime(3) = 5, and in the same way, a(prime(k))=prime(k+1).
a(4) = 4 / 2 * nextprime(2) = 2*3 = 6.
a(6) = 6 / 2 * nextprime(3) = 3*5 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[d = FactorInteger[n]; n*NextPrime[d[[-1, 1]]]/d[[1, 1]], {n, 62}] (* Ivan Neretin, Jan 23 2018 *)
  • PARI
    a(n,f=factor(n)[,1])={f||f=[1];n\f[1]*nextprime(f[#f]+1)}

A381500 a(n) = A019565(A187769(n)).

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 165, 154, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 195, 182, 273, 455, 286, 429, 715, 1001, 390, 546, 910, 1365, 858, 1430, 2145, 2002, 3003
Offset: 0

Views

Author

Keywords

Comments

The squarefree numbers, ordered first by largest prime factor (dividing the sequence into rows), then by number of prime factors, then lexicographically by their prime factors (written in descending order).
We index (a(n)) from offset 0, matching the choice for A019565 and similar sequences.

Examples

			Table begins:
  Row 0:  1;
  Row 1:  2;
  Row 2:  3,  6;
  Row 3:  5, 10, 15, 30;
  Row 4:  7, 14, 21, 35, 42, 70, 105, 210;
  Row 5: 11, 22, 33, 55, 77, 66, 110, 165, 154, 231, 385, 330, 462, 770, 1155, 2310;
  ...
Table of a(n) for n = 0..31, demonstrating relationship of this sequence with s = A187769:
          <-factors                    <-factors
   n  a(n)  2 3 5 7  s(n)  |   n   a(n)  2 3 5 7 11 s(n)
  -------------------------|----------------------------
   0    1   .          0   |  16    11   . . . . x   16
   1    2   x          1   |  17    22   x . . . x   17
   2    3   . x        2   |  18    33   . x . . x   18
   3    6   x x        3   |  19    55   . . x . x   20
   4    5   . . x      4   |  20    77   . . . x x   24
   5   10   x . x      5   |  21    66   x x . . x   19
   6   15   . x x      6   |  22   110   x . x . x   21
   7   30   x x x      7   |  23   165   . x x . x   22
   8    7   . . . x    8   |  24   154   x . . x x   25
   9   14   x . . x    9   |  25   231   . x . x x   26
  10   21   . x . x   10   |  26   385   . . x x x   28
  11   35   . . x x   12   |  27   330   x x x . x   23
  12   42   x x . x   11   |  28   462   x x . x x   27
  13   70   x . x x   13   |  29   770   x . x x x   29
  14  105   . x x x   14   |  30  1155   . x x x x   30
  15  210   x x x x   15   |  31  2310   x x x x x   31
  -------------------------|----------------------------
            1 2 4 8  s(n)  |             1 2 4 8 16 s(n)
             bits->                         bits->
		

Crossrefs

Programs

  • Mathematica
    a187769 = {{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten; a019565[x_] := Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[x, 2]; Map[a019565, a187769]

Formula

a(n) = A019565(A187769(n)).
As an irregular triangle T(n,k), where row 0 = {1}:
For n > 1, omega(T(n,1)) = 1, omega(T(n, 2^(n-1))) = n, thus row n is divided into n segments S such that with S, omega(T(n,k)) = m, where m = 1..n. (See A187769 for the lengths of segments associated with Pascal's triangle A007318.)
S(-1,-1) = (1).
For n >= 0:
S(n-1, n) = (); S(n, -1) = ();
for 0 <= m <= n, S(n,m) = ( A253550'(S(n-1, m)), A119416'(S(n-1, m-1)) ), where Axxx'((i_1, i_2, ..., i_j)) denotes Axxx(i_1), Axxx(i_2), ..., Axxx(i_j).
a(A163866(n)) = A098012(n).
Showing 1-4 of 4 results.