A105073 Define a(1)=0, a(2)=2 then a(n) = 3*a(n-1) - a(n-2), a(n+1) = 3*a(n)-a(n-1) and a(n+2) = 3*a(n+1) - a(n) + 2.
0, 2, 6, 16, 44, 116, 304, 798, 2090, 5472, 14328, 37512, 98208, 257114, 673134, 1762288, 4613732, 12078908, 31622992, 82790070, 216747218, 567451584, 1485607536, 3889371024, 10182505536, 26658145586, 69791931222, 182717648080, 478361013020, 1252365390980
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,1,-3,1).
Programs
-
Magma
I:=[0,2,6,16,44]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) + Self(n-3) - 3*Self(n-4) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Jan 13 2019
-
Mathematica
a[n_]:=(1/6)*(Fibonacci[2*n+4] - 2*Fibonacci[2*n] - 2*Cos[(n+2)*(2*Pi/3)] - 4 ); Array[a,50] (* Stefano Spezia, Jan 11 2019 *) RecurrenceTable[{a[1]==0, a[2]==2, a[3]==6, a[4]==16, a[5]==44, a[n]== 3 a[n-1] - a[n-2] + a[n-3] - 3 a[n-4] + a[n-5]}, a, {n, 35}] (* Vincenzo Librandi, Jan 13 2019 *)
Formula
a(n) = (1/6)*(Fibonacci(2n+4) - 2*Fibonacci(2n) - 2*cos((n+2)(2*Pi/3)) - 4). - Ralf Stephan, May 20 2007
From R. J. Mathar, Nov 13 2009: (Start)
a(n) = 3*a(n-1) - a(n-2) + a(n-3) - 3*a(n-4) + a(n-5).
G.f.: 2*x^2/((1-x) * (1+x+x^2) * (1-3*x+x^2)).
a(n) = floor(A027941(n)/2). - Anthony Hernandez, Jan 03 2019
Extensions
Extended by R. J. Mathar, Nov 13 2009
Comments