A105209 Nearest integer to the cube root of n.
1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1
Examples
a(16) = 3 because 16^(1/3) = 2.519842...
References
- Erwin Voellmy, Fünfstellige Logarithmen und Zahlentafeln, Orell Füssli Verlag, Zürich (1962).
Links
- Seung-Jin Bang, Problem 10212, The American Mathematical Monthly, Vol. 99, No. 4 (1992), p. 361, Nearest Integer Zeta Functions, solution to Problem 10212, ibid., Vol. 101, No. 6 (1994), pp. 579-580.
Programs
-
Maple
for n from 1 to 200 do printf(`%d,`,round(n^(1/3))) od: # James Sellers, Apr 21 2005
-
Mathematica
Round[Surd[Range[110],3]] (* Harvey P. Dale, Feb 28 2015 *)
-
PARI
a(n) = round(n^(1/3)); \\ Michel Marcus, Aug 19 2016
-
Python
from sympy import integer_nthroot def A105209(n): return (m:=integer_nthroot(n,3)[0])+((n<<3)>=((m<<1)+1)**3) # Chai Wah Wu, Jun 06 2025
Formula
Sum_{n>=1} 1/a(n)^s = 3*zeta(s-2) + zeta(s)/4^s, for s > 3 (Seung-Jin Bang, 1992). - Amiram Eldar, Oct 31 2020
Extensions
More terms from James Sellers, Apr 21 2005