A105222 Smallest integer m > 1 such that m^(n-1) == 1 (mod n).
2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, 16, 9, 2, 55, 21, 57, 20, 59, 2, 61, 2, 63, 8, 65, 8, 25, 2, 69, 22, 11, 2, 73, 2, 75, 26
Offset: 1
Examples
We have 2^(2-1) == 0, 3^(2-1) == 1 (mod 2), so a(2) = 3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Fermat Pseudoprime
- Wikipedia, Fermat pseudoprime
Programs
-
Mathematica
Table[k = 2; While[PowerMod[k, n - 1, n] != 1, k++]; k, {n, 2, 100}] (* T. D. Noe, Dec 07 2013 *)
-
PARI
a(n) = {m = 2; while ((m^(n-1) % n) != lift(Mod(1, n)), m++); m; } \\ Michel Marcus, Dec 01 2013
-
PARI
a(n) = my(m=2); while(Mod(m, n)^(n-1)!=1, m++); m \\ Charles R Greathouse IV, Dec 01 2013
Formula
a(p) = 2 for odd prime p.
Comments