cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105249 a(n) = binomial(n+2,n)*binomial(n+6,n).

Original entry on oeis.org

1, 21, 168, 840, 3150, 9702, 25872, 61776, 135135, 275275, 528528, 965328, 1689324, 2848860, 4651200, 7379904, 11415789, 17261937, 25573240, 37191000, 53183130, 74890530, 103980240, 142506000, 192976875, 258434631, 342540576, 449672608, 585033240, 754769400
Offset: 0

Views

Author

Zerinvary Lajos, Apr 14 2005

Keywords

Examples

			a(0): C(0+2,0)*C(0+6,0) = C(2,0)*C(6,0) = 1*1 = 1;
a(10): C(10+2,10)*C(10+6,10) = C(12,10)*C(16,10) = 66*8008 = 528528.
		

Crossrefs

Cf. A062264.

Programs

  • Magma
    [Binomial(n+2,n)*Binomial(n+6,n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
    
  • Mathematica
    f[n_] := Binomial[n + 2, n]Binomial[n + 6, n]; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Apr 20 2005 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,21,168,840,3150,9702,25872,61776,135135},30] (* Harvey P. Dale, Oct 08 2012 *)
  • SageMath
    def A105249(n): return binomial(n+2,n)*binomial(n+6,n)
    print([a105249(n) for n in range(31)]) # G. C. Greubel, Mar 04 2025

Formula

a(0)=1, a(1)=21, a(2)=168, a(3)=840, a(4)=3150, a(5)=9702, a(6)=25872, a(7)=61776, a(8)=135135, a(n) = 9*a(n-1) -36*a(n-2) +84*a(n-3) -126*a(n-4) +126*a(n-5) -84*a(n-6) +36*a(n-7) -9*a(n-8) +a(n-9). - Harvey P. Dale, Oct 08 2012
G.f.: (1+12*x+15*x^2)/(1-x)^9. - Colin Barker, Jan 21 2013
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*Pi^2 - 5869/50.
Sum_{n>=0} (-1)^n/a(n) = 256*log(2)/5 - 4*Pi^2 + 371/75. (End)
E.g.f.: (1/1440)*(1440 + 28800*x + 91440*x^2 + 95520*x^3 + 42900*x^4 + 9312*x^5 + 1010*x^6 + 52*x^7 + x^8)*exp(x). - G. C. Greubel, Mar 04 2025

Extensions

More terms from Robert G. Wilson v, Apr 20 2005