A105286 Numbers k such that prime(k+1) == 1 (mod k).
1, 2, 3, 10, 24, 25, 66, 168, 182, 186, 187, 188, 438, 6462, 40071, 40084, 40085, 40091, 40108, 40118, 251745, 637224, 637306, 637336, 637338, 10553441, 10553445, 10553452, 10553479, 10553515, 10553550, 10553829, 27067032, 27067054, 27067134, 69709710, 69709713, 179992838, 179993008, 3140421868, 8179002150, 55762149074, 1003652347080, 1003652347109, 1003652347112, 1003652347352, 1003652347375
Offset: 1
Keywords
Links
- Chai Wah Wu, Meertens Number and Its Variations, arXiv:1603.08493 [math.NT], 2016.
- Chai Wah Wu, Meertens number and its variations, Communications on Number Theory and Combinatorial Theory, 3 (2022), article 5.
Programs
-
Mathematica
bb={};Do[If[1==Mod[Prime[n+1], n], bb=Append[bb, n]], {n, 1, 200000}];bb
-
Python
from itertools import count, islice from sympy import prime def A105286_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda k: not (prime(k+1)-1)%k,count(max(startvalue,1))) A105286_list = list(islice(A105286_gen(),10)) # Chai Wah Wu, Dec 14 2022
-
Sage
def A105286(max) : terms = [] p = 3 for n in range(1, max+1) : if (p - 1) % n == 0 : terms.append(n) p = next_prime(p) return terms # Eric M. Schmidt, Feb 05 2013
Extensions
More terms from Farideh Firoozbakht, May 12 2005
First term inserted by Eric M. Schmidt, Feb 05 2013
More terms from Michel Marcus, Dec 29 2022
a(40)-a(47) from Max Alekseyev, Aug 31 2024
Comments