cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105286 Numbers k such that prime(k+1) == 1 (mod k).

Original entry on oeis.org

1, 2, 3, 10, 24, 25, 66, 168, 182, 186, 187, 188, 438, 6462, 40071, 40084, 40085, 40091, 40108, 40118, 251745, 637224, 637306, 637336, 637338, 10553441, 10553445, 10553452, 10553479, 10553515, 10553550, 10553829, 27067032, 27067054, 27067134, 69709710, 69709713, 179992838, 179993008, 3140421868, 8179002150, 55762149074, 1003652347080, 1003652347109, 1003652347112, 1003652347352, 1003652347375
Offset: 1

Views

Author

Zak Seidov, Apr 25 2005

Keywords

Comments

If k is a term, then prime(k+1)^prime(k+1) is a reverse Meertens number in base prime(k+1)^((prime(k+1)-1)/k). - Chai Wah Wu, Dec 14 2022
Integers k such that A004649(k+1) = 1. - Michel Marcus, Dec 30 2022

Crossrefs

Programs

  • Mathematica
    bb={};Do[If[1==Mod[Prime[n+1], n], bb=Append[bb, n]], {n, 1, 200000}];bb
  • Python
    from itertools import count, islice
    from sympy import prime
    def A105286_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k: not (prime(k+1)-1)%k,count(max(startvalue,1)))
    A105286_list = list(islice(A105286_gen(),10)) # Chai Wah Wu, Dec 14 2022
  • Sage
    def A105286(max) :
        terms = []
        p = 3
        for n in range(1, max+1) :
            if (p - 1) % n == 0 : terms.append(n)
            p = next_prime(p)
        return terms
    # Eric M. Schmidt, Feb 05 2013
    

Extensions

More terms from Farideh Firoozbakht, May 12 2005
First term inserted by Eric M. Schmidt, Feb 05 2013
More terms from Michel Marcus, Dec 29 2022
a(40)-a(47) from Max Alekseyev, Aug 31 2024