A104907
Numbers n such that d(n)*reversal(n)=sigma(n), where d(n) is number of positive divisors of n.
Original entry on oeis.org
1, 73, 861, 7993, 8241, 799993, 7999993, 44908500, 82000041, 293884500, 6279090751, 8200000041, 62698513951, 79999999993, 82000000041, 374665576800, 597921764310, 7999999999993, 8200000000041
Offset: 1
Let p=8*10^n-7 be a prime so d(p)=2; reversal(p)=4*10^n-3 and sigma(p)
=8*10^n-6 hence d(p)*reversal(p)=sigma(p) and this shows that p
is in the sequence. 73,7993,799993 and 7999993 are such terms.
Also let q=(2*10^n+1)/3 be a prime, so 123*q=82*10^n+41; reversal
(123*q)=14*10^n+28; d(123*q)=8 and sigma(123*q)=168*q+168=112*10^n
+224 hence d(123*q)*reversal(123*q)=sigma(123*q) and this shows
that 123*q is in the sequence. 861,8241 and 82000041 are such terms.
-
reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[0, n]*reversal[n] == DivisorSigma[1, n], Print[n]], {n, 1125000000}]
Select[Range[8*10^6],DivisorSigma[0,#]IntegerReverse[#]==DivisorSigma[1,#]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Jan 31 2023 *)
A105322
Primes of the form 8*10^n-7.
Original entry on oeis.org
73, 7993, 799993, 7999993, 79999999993, 7999999999993, 79999999999993, 7999999999999999999999999999999999999993, 7999999999999999999999999999999999999999999999993
Offset: 1
7993 is in the sequence because 7993=8*10^3-7 and 7993 is prime.
-
[ a: n in [0..50] | IsPrime(a) where a is 8*10^n-7 ]; // Vincenzo Librandi, Jul 19 2012
-
Do[If[PrimeQ[8*10^n - 7], Print[8*10^n - 7]], {n, 60}]
Select[Table[8*10^n-7,{n,0,80}],PrimeQ] (* Vincenzo Librandi, Jul 19 2012 *)
A114928
Numbers n such that sigma(n)=4*reversal(n).
Original entry on oeis.org
42, 402, 492, 4000002, 57906504, 400000002, 4000000002, 6279090751, 62698513951, 400000000002
Offset: 1
492 is in the sequence because sigma(492)=sigma(4*3*41)=7*4*42
=4*294=4*reversal(492).
-
Do[If[DivisorSigma[1, n]==4*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 500000000}]
A114927
Numbers n such that sigma(n)=3*reversal(n).
Original entry on oeis.org
41, 291552, 692133, 2946762, 8231796, 21732508611, 27892659612
Offset: 1
-
Do[If[DivisorSigma[1, n] == 3*FromDigits[Reverse[IntegerDigits[n]]], Print[n]], {n, 20000000}]
A115748
Numbers n such that sigma(n)=7*reversal(n).
Original entry on oeis.org
63301, 651001, 6967932, 2158803990, 88858402692
Offset: 1
2158803990 is in the sequence because sigma(2158803990)
=6951619584=7*993088512=7*reversal(2158803990).
A115749
Numbers n such that sigma(n)=8*reversal(n).
Original entry on oeis.org
861, 951, 2070, 8241, 900051, 8864151, 9000051, 82000041, 8200000041, 82000000041
Offset: 1
82000041 is in the sequence because sigma(82000041)
=112000224=8*14000028=8*reversal(82000041).
-
Do[If[DivisorSigma[1,n]==8*FromDigits[Reverse[IntegerDigits[n]]],Print[n]],{n,130000000}]
Showing 1-6 of 6 results.
Comments