cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105394 Decimal expansion of sum of reciprocals of squares of Lucas numbers.

Original entry on oeis.org

1, 2, 0, 7, 2, 9, 1, 9, 9, 6, 9, 8, 5, 7, 4, 7, 0, 7, 4, 4, 1, 7, 2, 0, 4, 1, 8, 4, 2, 5, 7, 6, 9, 9, 9, 4, 5, 3, 0, 6, 9, 2, 1, 4, 5, 4, 0, 1, 9, 0, 3, 6, 3, 7, 6, 9, 5, 1, 3, 1, 1, 5, 9, 4, 2, 2, 1, 2, 2, 4, 0, 0, 1, 5, 4, 0, 7, 0, 3, 5, 7, 7, 6, 1, 6, 7, 7, 6, 5, 5, 9, 7, 8, 6, 8, 8, 9, 9, 9, 2
Offset: 1

Views

Author

Jonathan Vos Post, Apr 04 2005

Keywords

Comments

This constant is transcendental (Duverney et al., 1997). - Amiram Eldar, Oct 30 2020

Examples

			1.207291996985747074417204...
		

References

  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Wiley, 1987, p. 97.

Crossrefs

Cf. A000032, A001254 (squares of Lucas numbers).

Programs

  • Mathematica
    f[n_] := f[n] = RealDigits[ Sum[ 1/LucasL[k]^2, {k, 1, n}], 10, 100] // First; f[n=100]; While[f[n] != f[n-100], n = n+100]; f[n] (* Jean-François Alcover, Feb 13 2013 *)

Formula

Equals Sum_{n >= 1} 1/L(n)^2.
Equals (1/8)*( theta_3(beta)^4 - 1 ), where beta = (3 - sqrt(5))/2 and theta_3(q) = 1 + 2*Sum_{n >= 1} q^(n^2) is a theta function. See Borwein and Borwein, Exercise 7(f), p. 97. - Peter Bala, Nov 13 2019
Equals c*(2*c+1), where c = A153415 (follows from the identity Sum_{n=-oo..oo} 1/L(n^2) = (Sum_{n=-oo..oo} 1/L(2*n))^2, see Bruckman, 1982). - Amiram Eldar, Jan 27 2022