A105422 Triangle read by rows: T(n,k) is the number of compositions of n having exactly k parts equal to 1.
1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 3, 0, 1, 3, 5, 3, 4, 0, 1, 5, 8, 9, 4, 5, 0, 1, 8, 15, 15, 14, 5, 6, 0, 1, 13, 26, 31, 24, 20, 6, 7, 0, 1, 21, 46, 57, 54, 35, 27, 7, 8, 0, 1, 34, 80, 108, 104, 85, 48, 35, 8, 9, 0, 1, 55, 139, 199, 209, 170, 125, 63, 44, 9, 10, 0, 1, 89, 240, 366, 404, 360
Offset: 0
Examples
T(6,2) = 9 because we have (1,1,4), (1,4,1), (4,1,1), (1,1,2,2), (1,2,1,2), (1,2,2,1), (2,1,1,2), (2,1,2,1) and (2,2,1,1). Triangle begins: 00: 1; 01: 0, 1; 02: 1, 0, 1; 03: 1, 2, 0, 1; 04: 2, 2, 3, 0, 1; 05: 3, 5, 3, 4, 0, 1; 06: 5, 8, 9, 4, 5, 0, 1; 07: 8, 15, 15, 14, 5, 6, 0, 1; 08: 13, 26, 31, 24, 20, 6, 7, 0, 1; 09: 21, 46, 57, 54, 35, 27, 7, 8, 0, 1; 10: 34, 80, 108, 104, 85, 48, 35, 8, 9, 0, 1; 11: 55, 139, 199, 209, 170, 125, 63, 44, 9, 10, 0, 1; 12: 89, 240, 366, 404, 360, 258, 175, 80, 54, 10, 11, 0, 1; 13: 144, 413, 666, 780, 725, 573, 371, 236, 99, 65, 11, 12, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- D. Baccherini, D. Merlini and R. Sprugnoli, Level generating trees and proper Riordan arrays, Applicable Analysis and Discrete Mathematics, 2, 2008, 69-91 (see p. 83). [_Emeric Deutsch_, Sep 21 2008]
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 10-11.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Crossrefs
Programs
-
Maple
G:=(1-z)/(1-z-z^2-t*z+t*z^2): Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 14 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # second Maple program: T:= proc(n) option remember; local j; if n=0 then 1 else []; for j to n do zip((x, y)-> x+y, %, [`if`(j=1, 0, [][]), T(n-j)], 0) od; %[] fi end: seq(T(n), n=0..20); # Alois P. Heinz, Nov 05 2012 # Uses function PMatrix from A357368. Adds a row above and a column to the left. PMatrix(10, n -> combinat:-fibonacci(n-2)); # Peter Luschny, Oct 07 2022
-
Mathematica
nn = 10; a = x/(1 - x) - x + y x; CoefficientList[CoefficientList[Series[1/(1 - a), {x, 0, nn}], x], y] // Flatten (* Geoffrey Critzer, Dec 23 2011 *) T[ n_, k_] := Which[k<0 || k>n, 0, n<2, Boole[n==k], True, T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 24 2024 *)
-
PARI
{T(n, k) = if(k<0 || k>n, 0, n<2, n==k, T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 24 2024 */
Formula
G.f.: (1-z)/(1 - z - z^2 - tz + tz^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0)=1, T(1,0)=0. - Philippe Deléham, Nov 18 2009
If the triangle's columns are transposed into rows, then T(n,k) can be interpreted as the number of compositions of n+k having exactly k 1's. Then g.f.: ((1-x)/(1-x-x^2))^(k-1) and T(n,k) = T(n-2,k) + T(n-1,k) - T(n-1, k-1) + T(n, k-1). Also, Sum_{j=1..n} T(n-j, j) = 2^(n-1), the number of compositions of n. - Gregory L. Simay, Jun 28 2019
Comments