A105563 a(n) = if (exactly 4 Fibonacci numbers exist with exactly n digits) then 1, otherwise 0.
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1
Links
- Hans J. H. Tuenter, Table of n, a(n) for n = 1..10000
- Jürgen Spilker, Die Ziffern der Fibonacci-Zahlen, Elemente der Mathematik, 58(1):26-33, 2003.
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Eric Weisstein's World of Mathematics, Almost Periodic Function
Programs
-
Mathematica
If[#==4,1,0]&/@Tally[IntegerLength/@Fibonacci[Range[500]]][[;;,2]] (* Harvey P. Dale, Nov 15 2023 *)
Formula
a(n) = 1 - A105565(n), for n>1.
a(n) = 5 - A050815(n), for n>1. - Hans J. H. Tuenter, Aug 28 2025
For n>1, a(n) = [{n*alpha+beta}>alpha], where alpha=log(10)/log(phi)-4, beta=log(5)/(2*log(phi))-1, [] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 28 2025
Comments