cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105693 a(n) = Fibonacci(2n+2)-2^n.

Original entry on oeis.org

0, 1, 4, 13, 39, 112, 313, 859, 2328, 6253, 16687, 44320, 117297, 309619, 815656, 2145541, 5637351, 14799280, 38826025, 101809867, 266865720, 699311581, 1832117599, 4799138368, 12569491809, 32917725667, 86200462408, 225717215989, 591018294423, 1547471885008
Offset: 0

Views

Author

Paul Barry, Apr 17 2005

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+2)-2^n: n in [0..30]]; // Vincenzo Librandi, Apr 21 2011
    
  • Mathematica
    Table[Fibonacci[2n+2]-2^n,{n,0,30}] (* or *) LinearRecurrence[{5,-7,2},{0,1,4},40] (* Harvey P. Dale, Jul 21 2016 *)
  • PARI
    concat(0, Vec(x*(1-x)/((1-2*x)*(1-3*x+x^2)) + O(x^40))) \\ Colin Barker, Sep 12 2016
    
  • PARI
    a(n)=fibonacci(2*n+2)-2^n \\ Charles R Greathouse IV, Sep 12 2016

Formula

G.f.: x(1-x)/((1-2x)(1-3x+x^2)).
a(n) = sum{k=0..n+1, binomial(n+1, k+1)*sum{j=0..floor(k/2), F(k-2j)}}.
a(n) = A258109(n+1) + A001906(n), n>1. - Yuriy Sibirmovsky, Sep 12 2016
a(n) = 5*a(n-1)-7*a(n-2)+2*a(n-3) for n>2. - Colin Barker, Sep 12 2016