cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A318945 Triangle read by rows: T(n,k) (n>=2, 0 <= k <= n-2) = number of Dyck paths with k valleys of altitude k.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 39, 19, 6, 1, 112, 64, 26, 7, 1, 313, 201, 97, 34, 8, 1, 859, 603, 331, 139, 43, 9, 1, 2328, 1752, 1064, 512, 191, 53, 10, 1
Offset: 2

Views

Author

N. J. A. Sloane, Sep 18 2018

Keywords

Examples

			Triangle begins:
1,
4,1,
13,5,1,
39,19,6,1,
112,64,26,7,1,
313,201,97,34,8,1,
859,603,331,139,43,9,1,
2328,1752,1064,512,191,53,10,1,
...
		

Crossrefs

Columns 0, 1, 2. 3 are A105693, A318946, A318947, A319405.

A276472 Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.

Original entry on oeis.org

1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 12 2016

Keywords

Comments

The recurrence relations for the border terms are the only way in which this differs from Pascal's triangle.
Column T(2n,n+1) appears to be divisible by 4 for n>=2; T(2n-1,n) divisible by 3 for n>=2; T(2n,n-2) divisible by 2 for n>=3.
The symmetry of T(n,k) can be observed in a hexagonal arrangement (see the links).
Consider T(n,k) mod 3 = q. Terms with q = 0 show reflection symmetry with respect to the central column T(2n-1,n), while q = 1 and q = 2 are mirror images of each other (see the link).

Examples

			Triangle T(n,k) begins:
n\k 1    2    3    4   5    6    7    8    9
1   1
2   1    2
3   4    3    5
4   11   7    8    13
5   29   18   15   21   34
6   76   47   33   36   55   89
7   199  123  80   69   91   144 233
8   521  322  203  149  160  235 377  610
9   1364 843  525  352  309  395 612  987  1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
		

Crossrefs

Programs

  • Mathematica
    Nm=12;
    T=Table[0,{n,1,Nm},{k,1,n}];
    T[[1,1]]=1;
    T[[2,1]]=1;
    T[[2,2]]=2;
    Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
    T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
    If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
    {Row[#,"\t"]}&/@T//Grid
  • PARI
    T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016

Formula

Conjectures:
Relations with other sequences:
T(n+1,1) = A002878(n-1), n>=1.
T(n,n) = A001519(n) = A122367(n-1), n>=1.
T(n+1,2) = A005248(n-1), n>=1.
T(n+1,n) = A001906(n) = A088305(n), n>=1.
T(2n-1,n) = 3*A054441(n-1), n>=2. [the central column].
Sum_{k=1..n} T(n,k) = 3*A105693(n-1), n>=2. [row sums].
Sum_{k=1..n} T(n,k)-T(n,1)-T(n,n) = 3*A258109(n), n>=2.
T(2n,n+1) - T(2n,n) = A026671(n), n>=1.
T(2n,n-1) - T(2n,n) = 2*A026726(n-1), n>=2.
T(n,ceiling(n/2)) - T(n-1,floor(n/2)) = 2*A026732(n-3), n>=3.
T(2n+1,2n) = 3*A004187(n), n>=1.
T(2n+1,2) = 3*A049685(n-1), n>=1.
T(2n+1,2n) + T(2n+1,2) = 3*A033891(n-1), n>=1.
T(2n+1,3) = 5*A206351(n), n>=1.
T(2n+1,2n)/3 - T(2n+1,3)/5 = 4*A092521(n-1), n>=2.
T(2n,1) = 1 + 5*A081018(n-1), n>=1.
T(2n,2) = 2 + 5*A049684(n-1), n>=1.
T(2n+1,2) = 3 + 5*A058038(n-1), n>=1.
T(2n,3) = 3 + 5*A081016(n-2), n>=2.
T(2n+1,1) = 4 + 5*A003482(n-1), n>=1.
T(3n,1) = 4*A049629(n-1), n>=1.
T(3n,1) = 4 + 8*A119032(n), n>=1.
T(3n+1,3) = 8*A133273(n), n>=1.
T(3n+2,3n+2) = 2 + 32*A049664(n), n>=1.
T(3n,3n-2) = 4 + 32*A049664(n-1), n>=1.
T(3n+2,2) = 2 + 16*A049683(n), n>=1.
T(3n+2,2) = 2*A023039(n), n>=1.
T(2n-1,2n-1) = A033889(n-1), n>=1.
T(3n-1,3n-1) = 2*A007805(n-1), n>=1.
T(5n-1,1) = 11*A097842(n-1), n>=1.
T(4n+5,3) - T(4n+1,3) = 15*A000045(8n+1), n>=1.
T(5n+4,3) - T(5n-1,3) = 11*A000204(10n-2), n>=1.
Relations between left and right sides:
T(n,1) = T(n,n) - T(n-2,n-2), n>=3.
T(n,2) = T(n,n-1) - T(n-2,n-3), n>=4.
T(n,1) + T(n,n) = 3*T(n,n-1), n>=2.

A125172 Triangle T(n,k) with partial column sums of the even-indexed Fibonacci numbers.

Original entry on oeis.org

1, 3, 1, 8, 4, 1, 21, 12, 5, 1, 55, 33, 17, 6, 1, 144, 88, 50, 23, 7, 1, 377, 232, 138, 73, 30, 8, 1, 987, 609, 370, 211, 103, 38, 9, 1, 2584, 1596, 979, 581, 314, 141, 47, 10, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 22 2006

Keywords

Comments

"Partial column sums" means the 1st column consists of the even-indexed Fibonacci numbers, the 2nd column shows the partial sums of the first column, the 3rd column the partial sums of the 2nd, etc. - R. J. Mathar, Sep 06 2011
Mirror of the fission triangle A193667, as in the Mathematica program below. - Clark Kimberling, Aug 11 2011

Examples

			First few rows of the triangle:
    1;
    3,  1;
    8,  4,  1;
   21, 12,  5,  1;
   55, 33, 17,  6,  1;
  144, 88, 50, 23,  7,  1;
  ...
		

Crossrefs

Cf. A105693 (row sums), A125171, A193667.

Programs

  • Mathematica
    z = 11;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193667 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* this sequence *)
    (* Clark Kimberling, Aug 11 2011 *)

Formula

T(n,1) = A001906(n).
T(n,k) = T(n-1,k-1) + T(n-1,k), k > 1.
From R. J. Mathar, Sep 06 2011: (Start)
T(n,k) = A125171(n,k), i.e., A125171 without column k=0.
Conjecture: T(n,k) = T(n,k-1) - A121460(n+1,k). (End)

A079285 First differences of A079284.

Original entry on oeis.org

0, 2, 1, 5, 4, 13, 13, 34, 39, 89, 112, 233, 313, 610, 859, 1597, 2328, 4181, 6253, 10946, 16687, 28657, 44320, 75025, 117297, 196418, 309619, 514229, 815656, 1346269, 2145541, 3524578, 5637351, 9227465, 14799280, 24157817
Offset: 0

Views

Author

Paul Barry, Feb 08 2003

Keywords

Examples

			a(2n) = Fib(2n+2) - 2^(n/2). a(2n+1) = Fib(2n+3)
		

Crossrefs

Cf. A000045, A008949, A001519 (bisection), A105693 (bisection).

Formula

a(n)=Fib(n+2)-2^floor(n/2)(1-(1)^(n+1))/2
G.f.: -x*(-2+x+2*x^2) / ( (x^2+x-1)*(2*x^2-1) ). - R. J. Mathar, Feb 13 2015

A320904 T(n, k) = binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n - k + 1)], -1), triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 16, 15, 1, 9, 29, 42, 31, 1, 11, 46, 93, 99, 63, 1, 13, 67, 176, 256, 219, 127, 1, 15, 92, 299, 562, 638, 466, 255, 1, 17, 121, 470, 1093, 1586, 1486, 968, 511, 1, 19, 154, 697, 1941, 3473, 4096, 3302, 1981, 1023
Offset: 0

Views

Author

Peter Luschny, Oct 28 2018

Keywords

Examples

			Triangle starts:
[0] 1
[1] 1,  3
[2] 1,  5,   7
[3] 1,  7,  16,  15
[4] 1,  9,  29,  42,   31
[5] 1, 11,  46,  93,   99,   63
[6] 1, 13,  67, 176,  256,  219,  127
[7] 1, 15,  92, 299,  562,  638,  466, 255
[8] 1, 17, 121, 470, 1093, 1586, 1486, 968, 511
		

Crossrefs

Row sums are A105693(n-1).
Cf. A097750.

Programs

  • Maple
    T := (n, k) -> binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n-k+1)], -1):
    for n from 0 to 11 do seq(simplify(T(n, k)), k = 0..n) od;
  • Mathematica
    s={};For[n=0,n<19,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)
Showing 1-5 of 5 results.