A318945
Triangle read by rows: T(n,k) (n>=2, 0 <= k <= n-2) = number of Dyck paths with k valleys of altitude k.
Original entry on oeis.org
1, 4, 1, 13, 5, 1, 39, 19, 6, 1, 112, 64, 26, 7, 1, 313, 201, 97, 34, 8, 1, 859, 603, 331, 139, 43, 9, 1, 2328, 1752, 1064, 512, 191, 53, 10, 1
Offset: 2
Triangle begins:
1,
4,1,
13,5,1,
39,19,6,1,
112,64,26,7,1,
313,201,97,34,8,1,
859,603,331,139,43,9,1,
2328,1752,1064,512,191,53,10,1,
...
- Czabarka, É., Flórez, R., Junes, L., & Ramírez, J. L., Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Mathematics (2018), 341(10), 2789-2807.
A276472
Modified Pascal's triangle read by rows: T(n,k) = T(n-1,k) + T(n-1,k-1), 12. T(n,n) = T(n,n-1) + T(n-1,n-1), n>1. T(1,1) = 1, T(2,1) = 1. n>=1.
Original entry on oeis.org
1, 1, 2, 4, 3, 5, 11, 7, 8, 13, 29, 18, 15, 21, 34, 76, 47, 33, 36, 55, 89, 199, 123, 80, 69, 91, 144, 233, 521, 322, 203, 149, 160, 235, 377, 610, 1364, 843, 525, 352, 309, 395, 612, 987, 1597, 3571, 2207, 1368, 877, 661, 704, 1007, 1599, 2584, 4181
Offset: 1
Triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9
1 1
2 1 2
3 4 3 5
4 11 7 8 13
5 29 18 15 21 34
6 76 47 33 36 55 89
7 199 123 80 69 91 144 233
8 521 322 203 149 160 235 377 610
9 1364 843 525 352 309 395 612 987 1597
...
In another format:
__________________1__________________
_______________1_____2_______________
____________4_____3_____5____________
________11_____7_____8_____13________
____29_____18_____15____21_____34____
_76_____47____33_____36____55_____89_
Cf.
A000045,
A000204,
A001519,
A001906,
A002878,
A005248,
A054441,
A088305,
A122367,
A258109,
A026671,
A026726,
A026732,
A004187,
A049685,
A033891,
A206351,
A092521,
A081018,
A049684,
A058038,
A081016,
A003482,
A049629,
A133273,
A049664,
A049683,
A119032,
A023039,
A007805,
A033889.
-
Nm=12;
T=Table[0,{n,1,Nm},{k,1,n}];
T[[1,1]]=1;
T[[2,1]]=1;
T[[2,2]]=2;
Do[T[[n,1]]=T[[n-1,1]]+T[[n,2]];
T[[n,n]]=T[[n-1,n-1]]+T[[n,n-1]];
If[k!=1&&k!=n,T[[n,k]]=T[[n-1,k]]+T[[n-1,k-1]]],{n,3,Nm},{k,1,n}];
{Row[#,"\t"]}&/@T//Grid
-
T(n,k) = if (k==1, if (n==1, 1, if (n==2, 1, T(n-1,1) + T(n,2))), if (kMichel Marcus, Sep 14 2016
A125172
Triangle T(n,k) with partial column sums of the even-indexed Fibonacci numbers.
Original entry on oeis.org
1, 3, 1, 8, 4, 1, 21, 12, 5, 1, 55, 33, 17, 6, 1, 144, 88, 50, 23, 7, 1, 377, 232, 138, 73, 30, 8, 1, 987, 609, 370, 211, 103, 38, 9, 1, 2584, 1596, 979, 581, 314, 141, 47, 10, 1
Offset: 1
First few rows of the triangle:
1;
3, 1;
8, 4, 1;
21, 12, 5, 1;
55, 33, 17, 6, 1;
144, 88, 50, 23, 7, 1;
...
-
z = 11;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193667 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* this sequence *)
(* Clark Kimberling, Aug 11 2011 *)
Original entry on oeis.org
0, 2, 1, 5, 4, 13, 13, 34, 39, 89, 112, 233, 313, 610, 859, 1597, 2328, 4181, 6253, 10946, 16687, 28657, 44320, 75025, 117297, 196418, 309619, 514229, 815656, 1346269, 2145541, 3524578, 5637351, 9227465, 14799280, 24157817
Offset: 0
a(2n) = Fib(2n+2) - 2^(n/2). a(2n+1) = Fib(2n+3)
A320904
T(n, k) = binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n - k + 1)], -1), triangle read by rows, T(n, k) for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 5, 7, 1, 7, 16, 15, 1, 9, 29, 42, 31, 1, 11, 46, 93, 99, 63, 1, 13, 67, 176, 256, 219, 127, 1, 15, 92, 299, 562, 638, 466, 255, 1, 17, 121, 470, 1093, 1586, 1486, 968, 511, 1, 19, 154, 697, 1941, 3473, 4096, 3302, 1981, 1023
Offset: 0
Triangle starts:
[0] 1
[1] 1, 3
[2] 1, 5, 7
[3] 1, 7, 16, 15
[4] 1, 9, 29, 42, 31
[5] 1, 11, 46, 93, 99, 63
[6] 1, 13, 67, 176, 256, 219, 127
[7] 1, 15, 92, 299, 562, 638, 466, 255
[8] 1, 17, 121, 470, 1093, 1586, 1486, 968, 511
-
T := (n, k) -> binomial(2*n + 1 - k, k)*hypergeom([1, 1, -k], [1, 2*(n-k+1)], -1):
for n from 0 to 11 do seq(simplify(T(n, k)), k = 0..n) od;
-
s={};For[n=0,n<19,n++,For[k=0,kDetlef Meya, Oct 03 2023 *)
Showing 1-5 of 5 results.
Comments