A105749 Number of ways to use the elements of {1,...,k}, 0 <= k <= 2n, once each to form a sequence of n sets, each having 1 or 2 elements.
1, 2, 14, 222, 6384, 291720, 19445040, 1781750880, 214899027840, 33007837322880, 6290830003852800, 1456812592995513600, 402910665227270323200, 131173228963370155161600, 49656810289225281849907200, 21628258853895305337293568000, 10739534026001485514941587456000
Offset: 0
Examples
a(2) = 14 = |{ ({1},{2}), ({2},{1}), ({1},{2,3}), ({2,3},{1}), ({2},{1,3}), ({1,3},{2}), ({3},{1,2}), ({1,2},{3}), ({1,2},{3,4}), ({3,4},{1,2}), ({1,3},{2,4}), ({2,4},{1,3}), ({1,4},{2,3}), ({2,3},{1,4}) }|.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Samuele Giraudo and Yannic Vargas, Operads of packed words, quotients, and monomial bases, Proc. 37th Conf. Formal Power Series Alg. Comb., Sém. Lotharingien Combin. (2025) Vol. 93B Art. No. 82. See p. 9.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Andrew Vince and Miklos Bona, The Number of Ways to Assemble a Graph, arXiv preprint arXiv:1204.3842 [math.CO], 2012.
- Index entries for related partition-counting sequences
Programs
-
Magma
[(&+[Binomial(n,j)*Factorial(n+j)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
-
Maple
a:= n-> add(binomial(n, k)*(n+k)!/2^k, k=0..n): seq(a(n), n=0..20); # Alois P. Heinz, Jul 21 2012
-
Mathematica
f[n_]:= Sum[Binomial[n,k]*(n+k)!/2^k, {k,0,n}]; Table[f[n], {n,0,20}]
-
SageMath
[sum(binomial(n,j)*factorial(n+j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023
Formula
a(n) = Sum_{k=0..n} C(n,k) * (n+k)! / 2^k.
a(n) = n! * A001515(n).
A003011(n) = Sum_{k=0..n} C(n, k)*a(k).
a(n) = Gamma(n+1)*Hypergeometric2F0([-n, n+1], [], -1/2). - Peter Luschny, Jul 29 2014
a(n) ~ sqrt(Pi) * 2^(n + 1) * n^(2*n + 1/2) / exp(2*n - 1). - Vaclav Kotesovec, Nov 27 2017
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = n*(2*n-1)*a(n-1) + n*(n-1)*a(n-2).
a(n) = e * sqrt(2/Pi) * n! * BesselK(n+1/2, 1).
a(n) = ((2*n)!/2^n) * Hypergeometric1F1(-n, -2*n, 2).
G.f.: (-2/x) * Integrate_{t=0..oo} exp(-t)/((t+1)^2 - 1 - 2/x) dt.
G.f.: e*( exp(-sqrt(1 + 2/x)) * ExpIntegralEi(-1 + sqrt(1 + 2/x)) - exp(sqrt(1 + 2/x)) * ExpIntegralEi(-1 - sqrt(1 + 2/x)) )/sqrt(x^2 + 2*x).
E.g.f.: ((1-x)/x) * Hypergeometric1F1(1, 3/2, -(1-x)^2/(2*x)).
E.g.f.: (1/(1-x))*Hypergeometric2F0([1, 1/2]; []; 2*x/(1-x)^2). (End)
Extensions
More terms from Robert G. Wilson v, Apr 23 2005
Comments