cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105802 Smallest m such that the m-th Fibonacci number has exactly n divisors that are also Fibonacci numbers.

Original entry on oeis.org

1, 3, 6, 15, 12, 45, 24, 36, 48, 405, 60, 315, 192, 144, 120, 945, 180, 1575, 240, 576, 3072, 295245, 360, 1296, 12288, 900, 960, 25515, 720, 14175, 840, 9216, 196608, 5184, 1260, 17325, 786432, 36864, 1680, 31185, 2880, 127575, 15360, 3600, 99225
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 20 2005

Keywords

Comments

A076985(n) = A000045(a(n)); A076984(a(n)) = n.

Examples

			n=6: a(6) = 45, A076985(6) = A000045(45) = 1134903170,
A076984(45) = #{1,2,5,34,109441,1134903170} = #{fib(1),fib(2),fib(5),fib(9),fib(21),fib(45)} = 6.
		

Crossrefs

Cf. A068499.

Programs

  • Mathematica
    t=Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 1000000}]; lst={}; n=1; While[pos=Flatten[Position[t, n, 1, 1]]; Length[pos]>0, AppendTo[lst, pos[[1]]]; n++ ]; lst (Noe)

Formula

Conjecture: a(2k+1) = 3*2^(Prime[k-1]-1) for k>3. It appears that a(2k+1) = 3*2^k for k = {1,2,3,4,6,10,12,16,18,...} = A068499[n] Numbers n such that n! reduced modulo (n+1) is not zero. - Alexander Adamchuk, Sep 15 2006

Extensions

More terms from T. D. Noe, Jan 18 2006