cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105868 Triangle read by rows, T(n,k) = C(n,k)*C(k,n-k).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 6, 1, 0, 0, 6, 12, 1, 0, 0, 0, 30, 20, 1, 0, 0, 0, 20, 90, 30, 1, 0, 0, 0, 0, 140, 210, 42, 1, 0, 0, 0, 0, 70, 560, 420, 56, 1, 0, 0, 0, 0, 0, 630, 1680, 756, 72, 1, 0, 0, 0, 0, 0, 252, 3150, 4200, 1260, 90, 1, 0, 0, 0, 0, 0, 0, 2772, 11550, 9240, 1980, 110, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Apr 23 2005

Keywords

Comments

Row sums are the central trinomial coefficients A002426.
Product of A007318 and this sequence is A008459.
Coefficient array for polynomials P(n,x) = x^n*F(1/2-n/2,-n/2;1;4/x). - Paul Barry, Oct 04 2008
Column sums give A001850. It appears that the sums along the antidiagonals of the triangle produce A182883. - Peter Bala, Mar 06 2013

Examples

			Triangle begins
  1;
  0,  1;
  0,  2,  1;
  0,  0,  6,  1;
  0,  0,  6, 12,  1;
  0,  0,  0, 30, 20, 1;
		

Crossrefs

Cf. A063007. A001850 (column sums), A182883.

Programs

  • Magma
    [[Binomial(n,k)*Binomial(k,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 14 2015
  • Maple
    gf := 1/((1 - x*y)^2 - 4*y^2*x)^(1/2):
    yser := series(gf, y, 12): ycoeff := n -> coeff(yser, y, n):
    row := n -> seq(coeff(expand(ycoeff(n)), x, k), k=0..n):
    seq(row(n), n=0..7); # Peter Luschny, Oct 28 2020
  • Mathematica
    Flatten[Table[Binomial[n,k]Binomial[k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Nov 12 2014 *)

Formula

G.f.: 1/(sqrt((1-x*y)^2-4*x^2*y)). - Vladimir Kruchinin, Oct 28 2020