cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105939 a(n) = binomial(n+3,3)*binomial(n+6,3).

Original entry on oeis.org

20, 140, 560, 1680, 4200, 9240, 18480, 34320, 60060, 100100, 160160, 247520, 371280, 542640, 775200, 1085280, 1492260, 2018940, 2691920, 3542000, 4604600, 5920200, 7534800, 9500400, 11875500, 14725620, 18123840, 22151360, 26898080, 32463200, 38955840, 46495680
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Comments

a(n) is the number of ordered pairs (A,B) of size 3 subsets of {1,2,...,n+6} such that A and B are disjoint. - Geoffrey Critzer, Sep 03 2013

Examples

			If n=0 then C(0+3,0)*C(0+6,3) = C(3,0)*C(6,3) = 1*20 = 20.
If n=8 then C(8+3,8)*C(8+6,3) = C(11,8)*C(14,3) = 165*364 = 60060.
		

Crossrefs

Programs

  • Magma
    A105939:= func< n | 20*Binomial(n+6,6) >;
    [A105939(n): n in [0..40]]; // G. C. Greubel, Mar 11 2025
    
  • Mathematica
    nn=25; f[x_]:=Exp[x](x^3/3!)^2;Range[0,nn]! CoefficientList[Series[ a=f''''''[x],{x,0,nn}],x] (* Geoffrey Critzer, Sep 03 2013 *)
    Table[Binomial[n+3,3]Binomial[n+6,3],{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{20,140,560,1680,4200,9240,18480},30] (* Harvey P. Dale, Mar 09 2022 *)
    20*Binomial[Range[0,40] +6,6] (* G. C. Greubel, Mar 11 2025 *)
  • SageMath
    def A105939(n): return 20*binomial(n+6,6)
    print([A105939(n) for n in range(41)]) # G. C. Greubel, Mar 11 2025

Formula

G.f.: 20/(1-x)^7. - Colin Barker, Jun 06 2012
E.g.f.: (d/dx)^6 (x^3/3!)^2 * exp(x). - Geoffrey Critzer, Sep 03 2013
a(n) = A000292(n+1)*A000292(n+4) = 20*A000579(n+6). - R. J. Mathar, Nov 30 2015
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=0} 1/a(n) = 3/50.
Sum_{n>=0} (-1)^n/a(n) = 48*log(2)/5 - 661/100. (End)
E.g.f.: (1/36)*(720 + 4320*x + 5400*x^2 + 2400*x^3 + 450*x^4 + 36*x^5 + x^6)*exp(x). - G. C. Greubel, Mar 11 2025

Extensions

More terms from Geoffrey Critzer, Sep 03 2013