cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105947 a(n) = C(n+4,4) * C(n+6,6).

Original entry on oeis.org

1, 35, 420, 2940, 14700, 58212, 194040, 566280, 1486485, 3578575, 8016008, 16893240, 33786480, 64574160, 118605600, 210327264, 361499985, 604167795, 984569740, 1568220500, 2446423980, 3744526500, 5632263000, 8336601000, 12157543125, 17487410031, 24834191760
Offset: 0

Views

Author

Zerinvary Lajos, Apr 27 2005

Keywords

Examples

			If n=0 then C(0+6,0)*C(0+4,4) = C(6,0)*C(4,4) = 1*1 = 1.
If n=10 then C(10+6,10)*C(10+4,4) = C(16,10)*C(14,4) = 8008*1001 = 8016008.
		

Crossrefs

Cf. A062196.

Programs

  • Magma
    A105947:= func< n | Binomial(n+4,4)*Binomial(n+6,6) >;
    [A105947(n): n in [0..40]]; // G. C. Greubel, Feb 22 2025
    
  • Mathematica
    Table[Binomial[n+6,n]Binomial[n+4,4],{n,0,30}] (* Harvey P. Dale, May 21 2014 *)
  • SageMath
    def A105947(n): return binomial(n+4,4)*binomial(n+6,6)
    print([A105947(n) for n in range(41)]) # G. C. Greubel, Feb 22 2025

Formula

G.f.: (1 + 24*x + 90*x^2 + 80*x^3 + 15*x^4)/(1-x)^11. - Colin Barker, Jan 28 2013
From Wesley Ivan Hurt, Jan 27 2022: (Start)
a(n) = (17280 + 78336*n + 152376*n^2 + 167780*n^3 + 116150*n^4 + 52983*n^5 +
16173*n^6 + 3270*n^7 + 420*n^8 + 31*n^9 + n^10)/17280.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). (End)
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 224*Pi^2 - 55244/25.
Sum_{n>=0} (-1)^n/a(n) = 12*Pi^2 + 512*log(2)/5 - 4711/25. (End)

Extensions

Terms from a(8) onwards corrected by Colin Barker, Jan 28 2013
Second example corrected by Colin Barker, Jan 28 2013