cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105968 a(n) = 4*a(n-1) - a(n-2) - 2*(-1)^n, a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 13, 50, 185, 692, 2581, 9634, 35953, 134180, 500765, 1868882, 6974761, 26030164, 97145893, 362553410, 1353067745, 5049717572, 18845802541, 70333492594, 262488167833, 979619178740, 3655988547125, 13644335009762, 50921351491921, 190041070957924
Offset: 0

Views

Author

Creighton Dement, Apr 28 2005

Keywords

Comments

This sequence is the (type 1A) "jbasejfor" transformation of the sequence (-1, -1, -1, -1, ..) with respect to the floretion given in the program code. Under the same conditions, the jbasejfor transformation of the sequence (1, 1, 1, 1, ...) is A006253 [Number of perfect matchings (or domino tilings) in C_4 X P_n]; the jbasejfor transformation of the sequence (1, -1, 1, -1, ...) is A001075 [Chebyshev's T(n,x) polynomials evaluated at x=2]; the jbasejfor transformation of the sequence (-1, 1, -1, 1, ...) is A001353 [3*a(n)^2 + 1 is a perfect square]. In this sense, the sequences (a(n)), A006253, A001075 and A001353 form a "quartett".
Floretion Algebra Multiplication Program, FAMP Code: 4jbasejforseq[ + .25'i + .25'j + .25'k + .25i' + .25j' + .25k' + .25'ii' + .25'jj' + .25'kk' + .25'ij' + .25'ik' + .25'ji' + .25'jk' + .25'ki' + .25'kj' + .25e]. ForType: 1A. 1vesforseq = (-1, -1, -1, -1, ..).

Crossrefs

Programs

  • GAP
    a:=[1,4,13];; for n in [4..30] do a[n]:=3*a[n-1]+3*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,4,13]; [n le 3 select I[n] else 3*Self(n-1) +3*Self(n-2) -Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify((4*ChebyshevU(n,2) -5*ChebyshevU(n-1,2) -(-1)^n)/3), n = 0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[(4*ChebyshevU[n, 2] -5*ChebyshevU[n-1, 2] -(-1)^n)/3, {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    nxt[{n_,a_,b_}]:={n+1,b,4b-a-2(-1)^(n+1)}; NestList[nxt,{1,1,4},30][[;;,2]] (* or *) LinearRecurrence[ {3,3,-1},{1,4,13},30] (* Harvey P. Dale, Apr 03 2024 *)
  • PARI
    Vec((1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)) + O(x^30)) \\ Colin Barker, May 25 2015
    
  • SageMath
    [(4*chebyshev_U(n,2) -5*chebyshev_U(n-1,2) -(-1)^n)/3 for n in (0..30)] # G. C. Greubel, Jan 15 2020
    

Formula

G.f.: (1-x)*(1+2*x)/((1+x)*(1-4*x+x^2)).
a(n) + a(n+1) = A054491(n+1) - A054491(n).
a(n) = 3*a(n-1) + 3*a(n-2) - a(n-3). - Colin Barker, May 25 2015
a(n) = ( 4*ChebyshevU(n,2) - 5*ChebyshevU(n-1,2) - (-1)^n )/3. - G. C. Greubel, Jan 15 2020
E.g.f.: (exp(2*x)*(4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - cosh(x) + sinh(x))/3. - Stefano Spezia, Sep 19 2023