A106035 The "Octanacci" sequence: Trajectory of 1 under the morphism 1->{1,2,1}, 2->{1}.
1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1392
- M. Baake and R. V. Moody, Self-Similar Measures for Quasicrystals, in Directions in Mathematical Quasicrystals (eds. M. Baake and R. V. Moody), CRM Monograph Series, vol. 13, AMS, Providence, RI (2000), pp. 1-42; arXiv:math/0008063 [math.MG], 2000.
- Clément Sire, Rémy Mosseri, and Jean-François Sadoc, Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling, Journal de Physique 50.24 (1989): 3463-3476. See Eq. 2; HAL Id : jpa-00211156.
- Index entries for sequences that are fixed points of mappings
Programs
-
Maple
f(1):= (1, 2, 1): f(2):= (1): A:= [1]: for i from 1 to 6 do A:= map(f, A) od: A; # - N. J. A. Sloane, Mar 13 2019
-
Mathematica
s[1] = {1, 2, 1}; s[2] = {1}; s[3] = {}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[6] Nest[Function[l, Flatten[l/.{1->{1, 2, 1}, 2->{1}}]], {1}, 6] (* Vincenzo Librandi, Mar 14 2019 *) SubstitutionSystem[{1->{1,2,1},2->{1}},{1},{6}]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
Comments