A096529 Numbers whose divisors can be permuted so that all sums of triple adjacent divisors are primes.
4, 8, 9, 10, 12, 14, 15, 16, 20, 21, 24, 25, 26, 27, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 52, 55, 56, 57, 58, 60, 63, 65, 68, 75, 76, 77, 81, 84, 85, 86, 88, 92, 93, 99, 100, 104, 105, 111, 115, 117, 119, 123, 124, 125, 129, 132, 135, 136, 140, 143, 145, 147
Offset: 1
Keywords
Examples
Divisors of 24 are {1,2,3,4,6,8,12,24}: [2,8,3,12,4,1,24,6] -> (2+8+3,8+3+12,3+12+4,12+4+1,4+1+24,1+24+6) = (13,23,19,17,29,31): therefore 24 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..74
Crossrefs
Programs
-
PARI
isok(p) = {my(n = #p); if(n < 3, return(0)); for(k = 1, n-2, if(!isprime(p[k]+p[k+1]+p[k+2]), return(0))); 1;} is2(n) = {my(d = divisors(n)); forperm(d, p, if(isok(p), return(1))); 0;} is1(k) = {my(e = valuation(k,2), o = k >> e); (e == 0) || (o == 1 && e <= 4) || (abs(e-2) * numdiv(o) <= 2);} is(k) = is1(k) && is2(k); \\ Amiram Eldar, Nov 08 2024
Formula
A096527(a(n)) > 0.
Extensions
a(30)-a(51) from Michel Marcus, May 03 2014
a(52) onwards from Amiram Eldar, Nov 08 2024
Comments