cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106230 Least k > 0 for n > 0 such that (n^2 + 1)*(k^2) + (n^2 + 1)*k + 1 = j^2 where j sequence = A106229.

Original entry on oeis.org

3, 8, 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, 224, 255, 288, 323, 360, 399, 440, 483, 528, 575, 624, 675, 728, 783, 840, 899, 960, 1023, 1088, 1155, 1224, 1295, 1368, 1443, 1520, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208, 2303, 2400, 2499
Offset: 1

Views

Author

Pierre CAMI, Apr 26 2005

Keywords

Comments

For (n^2 + 1)*(k^2) + (n^2 +1)*k + 1 = j^2 there is a sequence k(i,n) with a recurrence.
For n=1, k(1,1) = 0, k(2,1) = 3, k(i,1) = 6*k(i-1,1) + 2 - k(i-2,1).
For n=2, k(1,2) = 1, k(2,2) = 19, k(i,2) = 18*k(i-1,2) + 8 - k(i-2,2).
For n>2, k(1,n) = 0, k(2,n) = n^2 - 2*n, k(3,n) = n^2 + 2*n, k(4,n) = (4*n^2 + 2)*k(2,n) + 2*n^2 then k(i,n) = (4*n^2 + 2)*k(i-2,n) + 2*n^2 - k(i-4,n). As i increases the ratio j(i,n)/k(i,n) tends to sqrt(n^2 + 1).

Crossrefs

Programs

Formula

For n > 2, a(n) = n^2 - 2*n.
a(n) = A005563(n-2), n>2. - R. J. Mathar, Aug 28 2008
G.f.: (3 - x - 12*x^2 + 20*x^3 - 8*x^4)/(1 - x)^3. - G. C. Greubel, May 11 2017