cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A324045 a(n) = A000010(n) - A106316(n).

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 2, 5, 0, 0, 0, 0, -2, -4, 6, 0, -6, 0, -8, -8, -6, 0, -4, 7, -8, 17, 12, 0, -16, 0, 13, 17, -12, 15, -3, 0, -14, 19, 6, 0, 6, 0, 8, -12, -18, 0, 4, 9, -1, 23, 6, 0, 0, 36, -8, 25, -24, 0, -32, 0, -26, 33, 29, 40, -10, 0, 2, 29, -34, 0, 12, 0, -32, 37, 0, 40, -18, 0, -24, 12, -36, 0, -4, 48, -38, 35, -36, 0, -30, 44, -4, 37, -42, 52, -16, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000010(n) - A106316(n).

A324046 a(n) = gcd(n, A106316(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 3, 1, 2, 1, 10, 1, 6, 1, 4, 9, 2, 1, 12, 1, 1, 3, 2, 1, 18, 1, 8, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 3, 2, 1, 12, 1, 2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 48, 1, 1, 9, 4, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n, A106316(n)).

A324047 a(n) = A000203(n) - A106316(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 12, 2, 13, 12, 14, 2, 24, 2, 16, 12, 29, 2, 27, 2, 26, 12, 20, 2, 48, 18, 22, 39, 56, 2, 48, 2, 60, 45, 26, 39, 76, 2, 28, 51, 80, 2, 90, 2, 72, 42, 32, 2, 112, 24, 72, 63, 80, 2, 102, 68, 88, 69, 38, 2, 120, 2, 40, 101, 124, 76, 114, 2, 96, 81, 86, 2, 183, 2, 46, 121, 104, 76, 126, 2, 130, 79, 50, 2, 196, 92, 52
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(n) - A106316(n).

A106315 Harmonic residue of n.

Original entry on oeis.org

0, 1, 2, 5, 4, 0, 6, 2, 1, 4, 10, 16, 12, 8, 12, 18, 16, 30, 18, 36, 20, 16, 22, 12, 13, 20, 28, 0, 28, 24, 30, 3, 36, 28, 44, 51, 36, 32, 44, 50, 40, 48, 42, 12, 36, 40, 46, 108, 33, 21, 60, 18, 52, 72, 4, 88, 68, 52, 58, 48, 60, 56, 66, 67, 8, 96, 66, 30, 84, 128, 70, 84, 72, 68, 78
Offset: 1

Views

Author

George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005

Keywords

Comments

The harmonic residue is the remainder when n*d(n) is divided by sigma(n), where d(n) is the number of divisors of n and sigma(n) is the sum of the divisors of n. If n is perfect, the harmonic residue of n is 0.

Crossrefs

Cf. A106316, A106317, A001599 (positions of zeros).

Programs

  • Haskell
    a106315 n = n * a000005 n `mod` a000203 n -- Reinhard Zumkeller, Apr 06 2014
  • Maple
    A106315 := proc(n)
        modp(n*numtheory[tau](n),numtheory[sigma](n)) ;
    end proc:
    seq(A106315(n),n=1..100) ; # R. J. Mathar, Jan 25 2017
  • Mathematica
    HarmonicResidue[n_]=Mod[n*DivisorSigma[0, n], DivisorSigma[1, n]]; HarmonicResidue[ Range[ 80]]

Formula

a(n) = A038040(n) - A000203(n) * A240471(n) . - Reinhard Zumkeller, Apr 06 2014

Extensions

Mathematica program completed by Harvey P. Dale, Feb 29 2024

A324121 a(n) = gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 2, 1, 1, 2, 2, 4, 2, 8, 12, 1, 2, 3, 2, 6, 4, 4, 2, 12, 1, 2, 4, 56, 2, 24, 2, 3, 12, 2, 4, 1, 2, 4, 4, 10, 2, 48, 2, 12, 6, 8, 2, 4, 3, 3, 12, 2, 2, 24, 4, 8, 4, 2, 2, 24, 2, 8, 2, 1, 4, 48, 2, 6, 12, 16, 2, 3, 2, 2, 2, 4, 4, 24, 2, 2, 1, 2, 2, 112, 4, 4, 12, 4, 2, 18, 28, 24, 4, 8, 20, 36, 2, 3, 6, 1, 2, 24, 2, 2, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Records 1, 2, 12, 56, 112, 120, 336, 720, 992, 2016, 4368, 8640, 14880, 16256, 26208, 59520, 78624, 120960, 131040, 191520, 227584, 297600, ... occur at positions: 1, 3, 6, 28, 84, 120, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 27846, 30240, 32760, 55860, 105664, 117800, ... . Note that A001599 is not a subsequence of the latter, as at least 18620 (present in A001599) is missing.

Crossrefs

Programs

  • Mathematica
    Table[GCD[n DivisorSigma[0,n],DivisorSigma[1,n]],{n,120}] (* Harvey P. Dale, Feb 17 2023 *)
  • PARI
    A324121(n) = gcd(sigma(n),n*numdiv(n));

Formula

a(n) = gcd(A000203(n), A038040(n)).
a(n) = A324058(A156552(n)).

A324122 a(n) = sigma(n) - gcd(n*d(n), sigma(n)), where d(n) = number of divisors of n (A000005) and sigma(n) = sum of divisors of n (A000203).

Original entry on oeis.org

0, 2, 2, 6, 4, 0, 6, 14, 12, 16, 10, 24, 12, 16, 12, 30, 16, 36, 18, 36, 28, 32, 22, 48, 30, 40, 36, 0, 28, 48, 30, 60, 36, 52, 44, 90, 36, 56, 52, 80, 40, 48, 42, 72, 72, 64, 46, 120, 54, 90, 60, 96, 52, 96, 68, 112, 76, 88, 58, 144, 60, 88, 102, 126, 80, 96, 66, 120, 84, 128, 70, 192, 72, 112, 122, 136, 92, 144, 78, 184, 120, 124, 82
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Crossrefs

Cf. A001599 (positions of zeros).

Programs

  • PARI
    A324122(n) = (sigma(n) - gcd(sigma(n),n*numdiv(n)));

Formula

a(n) = A000203(n) - A324121(n) = A000203(n) - gcd(A000203(n), A038040(n)).

A106317 Numbers k such that the remainder of the harmonic residue of k when divided by k is k-1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
Offset: 1

Views

Author

George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 29 2005

Keywords

Crossrefs

Programs

  • PARI
    is(n) = {my(f = factor(n)); n*numdiv(f) % sigma(f) == n - 1;} \\ Amiram Eldar, Jan 09 2024

Formula

It appears that k is in the sequence iff k is prime or k is in {1, 21, 822857} (Verified to 3.1*10^6). It is true that if k is the product of two distinct primes, then k=21. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Apr 30 2005, R. J. Mathar, Jan 25 2017
There are no other nonprime terms below 10^11. - Amiram Eldar, Jan 09 2024
Showing 1-7 of 7 results.